C#/.net程序调用python

C#/.net程序调用python

C#的优势在于window下的开发,不仅功能强大而且开发周期短。而python则有众多的第三方库,可以避免自己造轮子,利用C#来做界面,而具体实现使用python来实现可以大大提高开发效率。本文介绍如何使用pythonnet来执行python脚本,使用pythonnet既可以具有较高的交互性,又可以使用第三方python库,同时可以将程序需要的python环境及第三方库打包到软件中,避免用户进行python的环境配置。

C#调用python的常见方法

调用python常见的方法有4种

方式 优点 缺点
使用IronPython 无需安装python运行环境,交互性强,C#和python无缝连接 某些python第三方库不支持,如numpy
使用C++调用Python,然后将C++程序做成动态链接库 交互性较强 需要用户配置Python环境,实现方式复杂
利用C#命令行调用py文件 执行速度快 需要用户配置Python环境,交互性差
将python文件打包成exe进行调用 无需安装python运行环境, 执行速度慢,传递数据复杂,交互性差

可以看出4种方式均有限制,很难同时满足交互性强、可调用第三方python库、无需用户配置Python环境要求,而这几项要求恰恰是一款成熟软件所必须的。而使用pythonnet库可满足以上三点要求。

本文均在.net 6环境下测试

使用pythonnet

  1. Nuget安装pythonnet

  2. 设置Runtime.PythonDLL属性,即pythonxx.dll路径,xx为版本号

  3. 设置PythonEngine.PythonHome,即python.exe所在路径

  4. 设置PythonEngine.PythonPath,python脚本所在目录,可以放置多个路径,以分号隔开,但是pathToVirtualEnvLibsite-packages和pathToVirtualEnvLib应放在最后

  5. 调用PythonEngine.Initialize();

    string pathToVirtualEnv = ".\envs\pythonnetTest"; Runtime.PythonDLL = Path.Combine(pathToVirtualEnv, "python39.dll"); PythonEngine.PythonHome = Path.Combine(pathToVirtualEnv, "python.exe"); PythonEngine.PythonPath = $"{pathToVirtualEnv}\Lib\site-packages;{pathToVirtualEnv}\Lib"; PythonEngine.Initialize(); //调用无参无返回值方法 using (Py.GIL()) //执行python的调用应该放在using (Py.GIL())块内 {     //python对象应声明为dynamic类型     dynamic np = Py.Import("test");     np.hello(); } //调用有参有返回值方法 using (Py.GIL()) {     dynamic np = Py.Import("test");     int r = np.add(1, 2);     Console.WriteLine($"计算结果{r}"); } 

python文件,必须放在PythonEngine.PythonPath设定的目录下

def hello():     print("hello")  def add(a,b):     return a+b 

嵌入Python环境及使用第三方库

程序中包含Python脚本所需要的所有环境以及第三方库可以免去用户的自定义配置。本文使用Anaconda来构建专用的虚拟环境。

  1. 创建专用虚拟环境(windows下首先切换到要建立虚拟环境的根目录下),执行conda create --prefix=F:condaenvenv_name python=3.7 路径及python版本根据需要自定义。

  2. 使用Anaconda Prompt,激活虚拟环境conda activate F:condaenvenv_name

  3. 本次测试第三方库Numpy(如果需要其他库,安装方法相同),安装Numpypip install numpy

    string pathToVirtualEnv = ".\envs\pythonnetTest"; Runtime.PythonDLL = Path.Combine(pathToVirtualEnv, "python39.dll"); PythonEngine.PythonHome = Path.Combine(pathToVirtualEnv, "python.exe"); PythonEngine.PythonPath = $"{pathToVirtualEnv}\Lib\site-packages;{pathToVirtualEnv}\Lib"; PythonEngine.Initialize() //使用第三方库 using (Py.GIL()) {     dynamic np = Py.Import("numpy");     Console.WriteLine(np.cos(np.pi * 2));      dynamic sin = np.sin;     Console.WriteLine(sin(5));      double c = (double)(np.cos(5) + sin(5));     Console.WriteLine(c);      dynamic a = np.array(new List<float> { 1, 2, 3 });     Console.WriteLine(a.dtype);      dynamic b = np.array(new List<float> { 6, 5, 4 }, dtype: np.int32);     Console.WriteLine(b.dtype);      Console.WriteLine(a * b);     Console.ReadKey(); } 

    C#/.net程序调用python

    注意:C#和python对象进行数学运算时,必须将Python对象放到前面,例如np.pi*2,不能是2*np.pi

传递对象

可以将C#对象传递到python中

在C#中定义对象

public class Person {     public Person(string firstName, string lastName)     {         FirstName = firstName;         LastName = lastName;     }      public string FirstName { get; set; }     public string LastName { get; set; } } 
string pathToVirtualEnv = ".\envs\pythonnetTest"; Runtime.PythonDLL = Path.Combine(pathToVirtualEnv, "python39.dll"); PythonEngine.PythonHome = Path.Combine(pathToVirtualEnv, "python.exe"); PythonEngine.PythonPath = $"{pathToVirtualEnv}\Lib\site-packages;{pathToVirtualEnv}\Lib"; PythonEngine.Initialize(); //将C#中定义的类型传入python using (Py.GIL())  {     Person p = new Person("John", "Smith"); 	PyObject pyPerson = p.ToPython(); 	string r1 = test.FullName(pyPerson); 	Console.WriteLine($"全名:{r1}"); } 

python脚本

def FullName(p):     return p.FirstName+""+p.LastName 

C#/.net程序调用python

调用pyd文件

pyd文件主要有以下2点作用:

  1. 安全性更高:通过pyd生成的文件,已变成了dll文件,无法查看源码
  2. 编译成pyd后,性能会有提升

将.py文件编译成pyd文件步骤如下:

  1. pip install cython
  2. 在.py文件目录下创建setup.py文件
from distutils.core import setup from Cython.Build import cythonize  setup( name = "testName", ext_modules = cythonize("test.py"), #将test.py文件编译成pyd ) 
  1. 执行编译命令

python setup.py build_ext --inplace

最后生成的pyd文件一般是test+cpython版本-平台为文件名,可以重命名为test名称,也可以不管,使用时仍然可以按test调用。

调动pyd文件和调用py文件相同,但是执行效率大大增强,下文会对执行速度进行对比。

执行速度对比

在test.py中定义一个耗时函数

import time   def Count():     start = time.perf_counter()      sum = 0     for i in range(10000):         for j in range(10000):             sum = sum + i + j     print("sum = ", sum)      end = time.perf_counter()     runTime = end - start     runTime_ms = runTime * 1000      print("运行时间:", runTime, "秒") 
  • 直接执行test.py脚本,运行结果如下:

C#/.net程序调用python

  • 在C#中调用Conut()函数
//运行时间测试 Console.WriteLine("C#开始计时"); Stopwatch stopWatch = new Stopwatch(); stopWatch.Start(); test.Count(); stopWatch.Stop(); Console.WriteLine($"C#计时结束{stopWatch.ElapsedMilliseconds}"); 

执行结果如下:

C#/.net程序调用python

可以看到,使用pythonnet调用python脚本会有一定的性能损失,不过在对性能要求不是十分高的条件下是可以接受的。

  • 执行test.pyd文件,运行结果如下:

C#/.net程序调用python

从结果可以看出调用pyd比原生的py文件执行还要快,所以可以使用pythonnet来执行pyd文件,即实现代码保护又提升了执行效率。

发表评论

相关文章