安卓ro.serialno产生的整个流程

前言:

关于ro.serialno这个属性,相信大家都不陌生了,应用层的Build.getSerial()Build.SERIAL等均是直接或间接的获取了这个属性值。接下来从boot到系统应用,小小的分析一下它的整个流程:

由于是APP经常使用,那我们从应用层分析到底层kernel/boot

一,framework层

好的,我们进入安卓源码目录,grep查找一下:

xxxx@server01:~/workspace/rk3128_tablet$ grep -nrw "SERIAL" frameworks/base/ frameworks/base/docs/html/about/versions/android-4.2.jd:364:address or the {@link android.os.Build#SERIAL} number), they will provide the same value for each frameworks/base/api/test-current.txt:28614:    field public static final java.lang.String SERIAL; frameworks/base/api/system-current.txt:31035:    field public static final java.lang.String SERIAL; frameworks/base/api/current.txt:28540:    field public static final java.lang.String SERIAL; frameworks/base/core/java/android/os/Build.java:102:    public static final String SERIAL = getString("ro.serialno"); frameworks/base/tests/AccessoryDisplay/sink/src/com/android/accessorydisplay/sink/SinkActivity.java:61:    private static final String SERIAL = "0000000012345678"; frameworks/base/tests/AccessoryDisplay/sink/src/com/android/accessorydisplay/sink/SinkActivity.java:254:            sendString(conn, UsbAccessoryConstants.ACCESSORY_STRING_SERIAL, SERIAL); xxxx@server01:~/workspace/rk3128_tablet$  

成功的在Build.java找到了这个SERIAL属性,我们继续往下跟getString这个方法大概在871行。

..... /**      * Returns the version string for the radio firmware.  May return      * null (if, for instance, the radio is not currently on).      */     public static String getRadioVersion() {         return SystemProperties.get(TelephonyProperties.PROPERTY_BASEBAND_VERSION, null);     }  	private static String getString(String property) {         return SystemProperties.get(property, UNKNOWN);     }  	private static String[] getStringList(String property, String separator) {         String value = SystemProperties.get(property);         if (value.isEmpty()) {             return new String[0];         } else {             return value.split(separator);         }     } ..... 

SystemProperties大家应该很熟了

可以看出,getString是传入的"ro.serialno"这个字串去获取的属性中的值,其效果在命令行上相当于getprop ro.serialno

好的,framework分析到这。

二,系统层

我们从第一个程序init开始,源码路径:

your_pro/system/core/init/init.cpp 

根据关键字ro.serialno找到了地方,大概在464行:

 static void export_kernel_boot_props() {     char cmdline[1024];     char* s1;     char* s2;     char* s3;     char* s4;      struct {         const char *src_prop;         const char *dst_prop;         const char *default_value;     } prop_map[] = {         { "ro.boot.serialno",   "ro.serialno",   "", },//就是这了,根据ro.boot.serialno的值设置ro.serialno的值         { "ro.boot.mode",       "ro.bootmode",   "unknown", },         { "ro.boot.baseband",   "ro.baseband",   "unknown", },         { "ro.boot.bootloader", "ro.bootloader", "unknown", },         { "ro.boot.hardware",   "ro.hardware",   "unknown", },         { "ro.boot.revision",   "ro.revision",   "0", },     };      //if storagemedia is emmc, so we will wait emmc init finish     for (int i = 0; i < EMMC_RETRY_COUNT; i++) {         proc_read( "/proc/cmdline", cmdline, sizeof(cmdline) );         s1 = strstr(cmdline, STORAGE_MEDIA);         s2 = strstr(cmdline, "androidboot.mode=emmc"); 	s3 = strstr(cmdline, "storagemedia=nvme"); 	s4 = strstr(cmdline, "androidboot.mode=nvme");          if ((s1 == NULL) && (s3 == NULL)) {             //storagemedia is unknow             break;         }          if ((s1 > 0) && (s2 > 0)) {             ERROR("OK,EMMC DRIVERS INIT OKn");             property_set("ro.boot.mode", "emmc");             break;         } else if ((s3 > 0) && (s4 > 0)) { 	    ERROR("OK,NVME DRIVERS INIT OKn"); 	    property_set("ro.boot.mode", "nvme"); 	    break; 	} else {             ERROR("OK,EMMC DRIVERS NOT READY, RERRY=%dn", i);             usleep(10000);         }     }      for (size_t i = 0; i < ARRAY_SIZE(prop_map); i++) {//这里这里         std::string value = property_get(prop_map[i].src_prop);         property_set(prop_map[i].dst_prop, (!value.empty()) ? value.c_str() : prop_map[i].default_value);     }      /* save a copy for init's usage during boot */     std::string bootmode_value = property_get("ro.bootmode");     if (!bootmode_value.empty())         strlcpy(bootmode, bootmode_value.c_str(), sizeof(bootmode));      /* if this was given on kernel command line, override what we read      * before (e.g. from /proc/cpuinfo), if anything */     std::string hardware_value = property_get("ro.boot.hardware");     if (!hardware_value.empty())         strlcpy(hardware, hardware_value.c_str(), sizeof(hardware));     property_set("ro.hardware", hardware);      symlink_fstab(); } 

以上代码针对于ro.serialno的大致意思就是根据ro.boot.serialno的值设它。

但是,ro.boot.serialno在哪还不知道呢,我们继续。

好的,分析开始

从mian开始,找到第一阶段需要执行的代码

int main(int argc, char** argv) { ....  	if (!is_first_stage) {         // Indicate that booting is in progress to background fw loaders, etc.         close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000));          property_init();          // If arguments are passed both on the command line and in DT,         // properties set in DT always have priority over the command-line ones.         process_kernel_dt();         process_kernel_cmdline();//根据函数名字就大概知道,这是处理内核cmdline的函数          //add by xzj to set ro.rk.soc read from /proc/cpuinfo if not set         set_soc_if_need();          // Propagate the kernel variables to internal variables         // used by init as well as the current required properties.         export_kernel_boot_props();//这里就是将处理完cmdline的相关的boot属性输出,我们上面已经分析过这个函数了     }  .... } 

先看process_kernel_cmdline函数:

这里做了两个动作,改cmdline的权限和设置import_kernel_nv这个回调函数

static void process_kernel_cmdline() {     // Don't expose the raw commandline to unprivileged processes.     chmod("/proc/cmdline", 0440);      // The first pass does the common stuff, and finds if we are in qemu.     // The second pass is only necessary for qemu to export all kernel params     // as properties.     import_kernel_cmdline(false, import_kernel_nv);     if (qemu[0]) import_kernel_cmdline(true, import_kernel_nv); } 

回调函数import_kernel_nv将传入的cmdline中的条目解析并且设置property

static void import_kernel_nv(const std::string& key, const std::string& value, bool for_emulator) {     if (key.empty()) return;     if (for_emulator) {         // In the emulator, export any kernel option with the "ro.kernel." prefix.         property_set(android::base::StringPrintf("ro.kernel.%s", key.c_str()).c_str(), value.c_str());         return;     }      if (key == "qemu") {         strlcpy(qemu, value.c_str(), sizeof(qemu));     } else if (android::base::StartsWith(key, "androidboot.")) {         property_set(android::base::StringPrintf("ro.boot.%s", key.c_str() + 12).c_str(),                      value.c_str());     } } 

再看看import_kernel_cmdline做了什么动作?

这里从/proc/cmdline读出数据,然后以空格“ ”分开数据,for循环调用传入的回调函数指针fn,也就是import_kernel_nv函数,再将分开的数据传参入回调函数。

void import_kernel_cmdline(bool in_qemu,                            std::function<void(const std::string&, const std::string&, bool)> fn) {     std::string cmdline;     android::base::ReadFileToString("/proc/cmdline", &cmdline);      for (const auto& entry : android::base::Split(android::base::Trim(cmdline), " ")) {         std::vector<std::string> pieces = android::base::Split(entry, "=");         if (pieces.size() == 2) {             fn(pieces[0], pieces[1], in_qemu);         }     } } 

这里小小的总结下:

从上面的步骤跟踪下来,发现整体流程是将从boot传给kernelcmdline中的androidboot.serialno赋给ro.boot.serialno,然后再根据ro.boot.*相关的属性去设置export_kernel_boot_props函数中prop_map这个数组对应的ro. 属性。

举个栗子,此处serialno的流程就该为:

boot- > kernel cmdline -> androidboot.serialno -> ro.boot.serialno -> ro.serialno -> 然后再被prop调用

到这里,只有kernel cmdline之前的流程不知道了,具体boot是怎么将一堆东西传给/proc/cmdline的呢?

好的,安排它~

三,u-Boot层

继续进uboot目录搜索一下:

xxx@server01:~/workspace/rk3128_tablet$ grep -nrw "androidboot.serialno" u-boot/ 匹配到二进制文件 u-boot/u-boot.bin 匹配到二进制文件 u-boot/common/cmd_bootrk.o 匹配到二进制文件 u-boot/common/built-in.o 匹配到二进制文件 u-boot/uboot.img 匹配到二进制文件 u-boot/u-boot u-boot/include/fastboot.h:81:#define FASTBOOT_SERIALNO_BOOTARG "androidboot.serialno" xxx@server01:~/workspace/rk3128_tablet$  

找到一个FASTBOOT_SERIALNO_BOOTARG,继续搜它,看谁用了

xtw-cl@server01:~/workspace/pnd_rk3128_tablet$ grep -nrw "FASTBOOT_SERIALNO_BOOTARG" u-boot/ u-boot/common/cmd_bootrk.c:583:         if (!strstr(command_line, FASTBOOT_SERIALNO_BOOTARG)) { u-boot/common/cmd_bootrk.c:585:                                 "%s %s=%s", command_line, FASTBOOT_SERIALNO_BOOTARG, sn); u-boot/include/fastboot.h:81:#define FASTBOOT_SERIALNO_BOOTARG "androidboot.serialno" xtw-cl@server01:~/workspace/pnd_rk3128_tablet$ 

找到了,u-boot/common/cmd_bootrk.c文件

好的,开始分析源码:

static void rk_commandline_setenv(const char *boot_name, rk_boot_img_hdr *hdr, bool charge) { ....  	snprintf(command_line, sizeof(command_line), 			 "%s SecureBootCheckOk=%d", command_line, SecureBootCheckOK);  	char *sn = getenv("fbt_sn#"); 	if (sn != NULL) { 		/* append serial number if it wasn't in device_info already */ 		if (!strstr(command_line, FASTBOOT_SERIALNO_BOOTARG)) { 			snprintf(command_line, sizeof(command_line), 					"%s %s=%s", command_line, FASTBOOT_SERIALNO_BOOTARG, sn); 		} 	}  	command_line[sizeof(command_line) - 1] = 0;  	setenv("bootargs", command_line); #endif /* CONFIG_CMDLINE_TAG */ }  

从源码可得知,androidboot.serialno的这个sn参数是通过getenv("fbt_sn#")获取到的,好的,继续搜索fbt_sn#看看是哪里设置的这个环境变量

xxx@server01:~/workspace/rk3128_tablet$ grep -nrw "fbt_sn#" u-boot/ 匹配到二进制文件 u-boot/u-boot.bin u-boot/common/cmd_bootrk.c:580: char *sn = getenv("fbt_sn#"); 匹配到二进制文件 u-boot/common/cmd_fastboot.o 匹配到二进制文件 u-boot/common/cmd_bootrk.o u-boot/common/cmd_fastboot.c:662:       //setenv("fbt_sn#", serial_number); u-boot/common/cmd_fastboot.c:668:       char *sn = getenv("fbt_sn#"); 匹配到二进制文件 u-boot/common/built-in.o u-boot/board/rockchip/rk33xx/rk33xx.c:226:              setenv("fbt_sn#", tmp_buf); u-boot/board/rockchip/rk32xx/rk32xx.c:220:              setenv("fbt_sn#", tmp_buf); 匹配到二进制文件 u-boot/board/rockchip/rk32xx/rk32xx.o 匹配到二进制文件 u-boot/board/rockchip/rk32xx/built-in.o 匹配到二进制文件 u-boot/uboot.img 匹配到二进制文件 u-boot/u-boot xxx@server01:~/workspace/rk3128_tablet$  

可以得知,设setenv的有两个,但是我们生成的二进制文件是rk32xx.o,所以我们分析rk32xx.c这个源码。

 #ifdef CONFIG_BOARD_LATE_INIT extern char bootloader_ver[24]; int board_late_init(void) { 	debug("board_late_initn"); 	     ....  	char tmp_buf[32]; 	/* rk sn size 30bytes, zero buff */ 	memset(tmp_buf, 0, 32); 	if (rkidb_get_sn(tmp_buf)) { 		setenv("fbt_sn#", tmp_buf); 	}  	debug("fbt prebootn"); 	board_fbt_preboot();  	return 0; } #endif 

从上面可以看出设进fbt_sn#属性名字的tmp_buf是从rkidb_get_sn函数获取的,so继续。

顺便提一句,board_late_init会在环境初始化函数中调用,而它会被启动的更底层的汇编程序调用,这里不展开讲

搜一下这个rkidb_get_sn函数

xxxx@server01:~/workspace/rk3128_tablet$ grep -nrw "rkidb_get_sn" u-boot/ u-boot/board/rockchip/rk33xx/rk33xx.c:225:      if (rkidb_get_sn(tmp_buf)) { u-boot/board/rockchip/rk32xx/rk32xx.c:219:      if (rkidb_get_sn(tmp_buf)) { 匹配到二进制文件 u-boot/board/rockchip/rk32xx/rk32xx.o 匹配到二进制文件 u-boot/board/rockchip/rk32xx/built-in.o u-boot/board/rockchip/common/rkloader/idblock.c:565:int rkidb_get_sn(char* buf) u-boot/board/rockchip/common/rkloader/idblock.su:7:idblock.c:565:5:rkidb_get_sn 16      static u-boot/board/rockchip/common/rkloader/idblock.h:252:int rkidb_get_sn(char *buf); 匹配到二进制文件 u-boot/board/rockchip/common/rkloader/idblock.o 匹配到二进制文件 u-boot/board/rockchip/common/built-in.o u-boot/u-boot.map:1468: .text.rkidb_get_sn u-boot/u-boot.map:1470:                0x0000000060008bc4                rkidb_get_sn u-boot/u-boot.map:4608: .rel.text.rkidb_get_sn u-boot/System.map:219:60008bc4 T rkidb_get_sn 匹配到二进制文件 u-boot/u-boot xxxx@server01:~/workspace/rk3128_tablet$ 

实现在u-boot/board/rockchip/common/rkloader/idblock.c文件,打开它

int  (char* buf) { 	int size; 	Sector3Info *pSec3; 	uint8 *pidbbuf = (uint8 *)gIdDataBuf;  	pSec3 = (Sector3Info *)(pidbbuf + IDBLOCK_SIZE * IDBLOCK_SN);  	size = pSec3->snSize; 	if (size <= 0 || size > SN_MAX_SIZE) { 		PRINT_E("empty serial no.n"); 		return false; 	} 	strncpy(buf, (char *)pSec3->sn, size); 	buf[size] = ''; 	PRINT_E("sn: %sn", buf); 	return true; } 

可以看出是通过ID Block去读的,通过地址偏移取值拿到的,那我们继续找寻哪里给这个gIdDataBuf赋的值。

搜索一下,根据搜索出的信息去筛选

xxxxx@server01:~/workspace/rk3128_tablet$ grep -nrw "gIdDataBuf" u-boot/ 匹配到二进制文件 u-boot/board/rockchip/common/storage/storage.o u-boot/board/rockchip/common/storage/storage.h:197:EXT uint32 gIdDataBuf[512] __attribute__((aligned(ARCH_DMA_MINALIGN))); u-boot/board/rockchip/common/SecureBoot/SecureBoot.c:133:       FlashSramLoadStore(&gIdDataBuf[384], 1536, 1, 512);  // idblk sn info 匹配到二进制文件 u-boot/board/rockchip/common/SecureBoot/SecureBoot.o 匹配到二进制文件 u-boot/board/rockchip/common/mediaboot/sdmmcBoot.o u-boot/board/rockchip/common/mediaboot/sdmmcBoot.c:120:         ret1 = SDM_Read(ChipSel, SD_CARD_BOOT_PART_OFFSET, 4, gIdDataBuf); u-boot/board/rockchip/common/mediaboot/sdmmcBoot.c:123:                 if (gIdDataBuf[0] == 0xFCDC8C3B) { 匹配到二进制文件 u-boot/board/rockchip/common/mediaboot/sdmmcBoot.c u-boot/board/rockchip/common/mediaboot/UMSBoot.c:307:                   __UMSReadLBA(usb_stor_curr_dev, UMS_BOOT_PART_OFFSET, gIdDataBuf, 4); u-boot/board/rockchip/common/mediaboot/UMSBoot.c:308:                   if (gIdDataBuf[0] == 0xFCDC8C3B) { u-boot/board/rockchip/common/mediaboot/UMSBoot.c:309:                           if (0 == gIdDataBuf[128+104/4]) { u-boot/board/rockchip/common/mediaboot/UMSBoot.c:313:                           } else if (1 == gIdDataBuf[128+104/4]) { u-boot/board/rockchip/common/mediaboot/sdhciBoot.c:53:  block_mmc_read(SDHCI_EMMC_DEV_ID, SD_CARD_BOOT_PART_OFFSET, 4, gIdDataBuf); u-boot/board/rockchip/common/rkloader/idblock.c:30:extern uint32 gIdDataBuf[512]; u-boot/board/rockchip/common/rkloader/idblock.c:505:            pdst = (uint8 *)gIdDataBuf; u-boot/board/rockchip/common/rkloader/idblock.c:512:    GetIdblockDataNoRc4((char *)&gIdDataBuf[128 * 2], 512); u-boot/board/rockchip/common/rkloader/idblock.c:513:    GetIdblockDataNoRc4((char *)&gIdDataBuf[128 * 3], 512); u-boot/board/rockchip/common/rkloader/idblock.c:532:    if (gIdDataBuf[0] == 0xFCDC8C3B) { u-boot/board/rockchip/common/rkloader/idblock.c:533:            memcpy((char *)&idb0_info, gIdDataBuf, 512); u-boot/board/rockchip/common/rkloader/idblock.c:545:    uint8 *buf = (uint8 *)&gIdDataBuf[0]; u-boot/board/rockchip/common/rkloader/idblock.c:569:    uint8 *pidbbuf = (uint8 *)gIdDataBuf; u-boot/board/rockchip/common/rkloader/idblock.c:588:    uint8 *pidbbuf = (uint8 *)gIdDataBuf; u-boot/board/rockchip/common/rkloader/idblock.c:609:    uint8 *pidbbuf = (uint8 *)gIdDataBuf; 匹配到二进制文件 u-boot/board/rockchip/common/rkloader/idblock.o 匹配到二进制文件 u-boot/board/rockchip/common/built-in.o u-boot/u-boot.map:6203: .bss.gIdDataBuf u-boot/u-boot.map:6205:                0x000000006009b5c0                gIdDataBuf u-boot/System.map:1464:6009b5c0 B gIdDataBuf 匹配到二进制文件 u-boot/u-boot xxxxx@server01:~/workspace/rk3128_tablet$ 

我们这里的目的是需要知道哪里给gIdDataBuf其赋值,所以我们直接查看有编译到产出.o文件的并且有可能是直接给它赋值的文件及函数位置。

文件位置:u-boot/board/rockchip/common/mediaboot/sdmmcBoot.c

从名字就可以大概看出,这是操作sdmmc的,也就是eMMCSD卡的地方,好的继续看函数。

 uint32 SdmmcInit(uint32 ChipSel) { 	int32 ret1 = SDM_SUCCESS; 	uint32 ioctlParam[5] = {0, 0, 0, 0, 0};  	..... 	     ret1 = SdmmcReinit(ChipSel); 	if (ret1 == SDM_SUCCESS) { /* 卡能识别 */ #ifdef EMMC_NOT_USED_BOOT_PART 		ioctlParam[0] = ChipSel; 		         .....              		/* id blk data */ 		ret1 = SDM_Read(ChipSel, SD_CARD_BOOT_PART_OFFSET, 4, gIdDataBuf);//这里就是加载eMMC中id block数据的地方 #ifdef RK_SDCARD_BOOT_EN 		if (ChipSel == 0) { 			if (gIdDataBuf[0] == 0xFCDC8C3B) { 				gSdCardInfoTbl[ChipSel].FwPartOffset = SD_CARD_FW_PART_OFFSET; 				if (0 == gIdDataBuf[128 + 104 / 4]) { /* sd卡升级 */ 					gsdboot_mode = SDMMC_SDCARD_UPDATE; 					PRINT_E("SDCard Update.n"); 				} else if (1 == gIdDataBuf[128 + 104 / 4]) { /* sd 卡运行 */ 					gsdboot_mode = SDMMC_SDCARD_BOOT; 					PRINT_E("SDCard Boot.n"); 				} 			} else { 	..... 	return ERROR; }  

好的,从上面可以看出,gIdDataBuf里是存在eMMC上某个地方的数据,通过SDM_Read去读取加载的。

其实到这里,已经非常明确了,但是秉着一探到底的原则,我们继续往前~

看看SdmmcInit是哪里调用的?

经过grep跟踪大法一顿操作,加上分析,发现SdmmcInit是以方法结构体的方式存在于u-boot/board/rockchip/common/storage/storage.c文件中,具体如下:

#ifdef RK_SDMMC_BOOT_EN static MEM_FUN_T emmcFunOp = { 	2, 	BOOT_FROM_EMMC, 	0, 	SdmmcInit, 	SdmmcReadID, 	SdmmcBootReadPBA, 	SdmmcBootWritePBA, 	SdmmcBootReadLBA, 	SdmmcBootWriteLBA, 	SdmmcBootErase, 	SdmmcReadFlashInfo, 	SdmmcCheckIdBlock, 	NULL, 	NULL, 	NULL, 	SdmmcGetCapacity, 	SdmmcSysDataLoad, 	SdmmcSysDataStore, 	SdmmcBootEraseData, }; #endif 

然后又被包含在了一个结构体指针数组里:

static MEM_FUN_T *memFunTab[] =  { #ifdef RK_UMS_BOOT_EN 	&UMSFunOp, #endif  #ifdef RK_SDCARD_BOOT_EN 	&sd0FunOp, #endif  #if defined(RK_SDMMC_BOOT_EN) || defined(RK_SDHCI_BOOT_EN) 	&emmcFunOp, #endif  #ifdef RK_FLASH_BOOT_EN 	&NandFunOp, #endif  #ifdef CONFIG_RK_NVME_BOOT_EN 	&nvmeFunOp, #endif }; 

最后被StorageInit调用:

#define MAX_MEM_DEV	(sizeof(memFunTab)/sizeof(MEM_FUN_T *))   int32 StorageInit(void) { 	uint32 memdev;  	memset((uint8*)&g_FlashInfo, 0, sizeof(g_FlashInfo)); 	for(memdev=0; memdev<MAX_MEM_DEV; memdev++) 	{ 		gpMemFun = memFunTab[memdev]; 		if(memFunTab[memdev]->Init(memFunTab[memdev]->id) == 0) 		{ 			memFunTab[memdev]->Valid = 1; 			StorageReadFlashInfo((uint8*)&g_FlashInfo); 			vendor_storage_init(); 			return 0; 		} 	}  	/* if all media init error, usding null function */ 	gpMemFun = &nullFunOp;  	return -1; } 

然后被在RK的板级逻辑u-boot/board/rockchip/rk32xx/rk32xx.c中的board_storage_init调用

int board_storage_init(void) { 	int ret = 0;  	if (StorageInit() == 0) { 		printf("storage init OK!n"); 		ret = 0; 	} else { 		printf("storage init fail!n"); 		ret = -1; 	}  	return ret; } 

board_storage_init又在u-boot/arch/arm/lib/board.cuboot启动阶段被调用:

 /************************************************************************  *  * This is the next part if the initialization sequence: we are now  * running from RAM and have a "normal" C environment, i. e. global  * data can be written, BSS has been cleared, the stack size in not  * that critical any more, etc.  *  ************************************************************************  */  void board_init_r(gd_t *id, ulong dest_addr) { 	ulong malloc_start; #if !defined(CONFIG_SYS_NO_FLASH) 	ulong flash_size; #endif  	.....  #ifdef CONFIG_ROCKCHIP 	board_storage_init();//这里调用的 #endif  	..... 	 #ifdef CONFIG_BOARD_LATE_INIT 	board_late_init(); #endif 	..... 	/* main_loop() can return to retry autoboot, if so just run it again. */ 	for (;;) { 		main_loop(); 	}  	/* NOTREACHED - no way out of command loop except booting */ }  

然后来到uboot最靠前的汇编s文件u-boot/arch/arm/lib/crt0.S里,调用了board_init_r这个C函数:

 /* Set up final (full) environment */  	bl	c_runtime_cpu_setup	/* we still call old routine here */  	ldr	r0, =__bss_start	/* this is auto-relocated! */ 	ldr	r1, =__bss_end		/* this is auto-relocated! */  	mov	r2, #0x00000000		/* prepare zero to clear BSS */  clbss_l:cmp	r0, r1			/* while not at end of BSS */ 	strlo	r2, [r0]		/* clear 32-bit BSS word */ 	addlo	r0, r0, #4		/* move to next */ 	blo	clbss_l  	bl coloured_LED_init 	bl red_led_on  	/* call board_init_r(gd_t *id, ulong dest_addr) */ 	mov     r0, r9                  /* gd_t */ 	ldr	r1, [r9, #GD_RELOCADDR]	/* dest_addr */ 	/* call board_init_r */ 	ldr	pc, =board_init_r	/* this is auto-relocated! */  	/* we should not return here. */  #endif  ENDPROC(_main) 

四,总结

uboot在启动时,从eMMC某块区域读取了一定字节大小的数据,根据芯片厂商定义的偏移地址取出一组sn号,然后再用这串sn号以“androidboot.serialno=”前缀设进cmdline参数里,在启动kernel时传入,然后kernel将收到的cmdline数据写入到/proc/cmdline里,接着启动系统的第一个程序init程序,init程序从/proc/cmdline读出对应的“androidboot.serialno“数据以“ro.boot.serialno”名字设置属性,然后drmserviceinit程序设置的"ro.boot.serialno"属性来设置“ro.serialno,最后系统通过getprop ro.serialno来获取,APP通过Build.getSerial()Build.SERIAL来获取。

至此,大功告成

end

感谢阅读~

希望能帮到你~

see you~

码字不易,转载请注明原作者 ~ (from:https://erdong.work

发表评论

相关文章