Epoch 59/100 17/17 [==============================] - 1s 63ms/step - loss: 0.5240 - accuracy: 0.8296 - val_loss: 0.6141 - val_accuracy: 0.8000 Epoch 60/100 17/17 [==============================] - 1s 45ms/step - loss: 0.5175 - accuracy: 0.8333 - val_loss: 0.6084 - val_accuracy: 0.8083 Epoch 61/100 17/17 [==============================] - 1s 53ms/step - loss: 0.5093 - accuracy: 0.8352 - val_loss: 0.6047 - val_accuracy: 0.8250 Epoch 62/100 17/17 [==============================] - 1s 50ms/step - loss: 0.5044 - accuracy: 0.8370 - val_loss: 0.5991 - val_accuracy: 0.8083 Epoch 63/100 17/17 [==============================] - 1s 53ms/step - loss: 0.4981 - accuracy: 0.8333 - val_loss: 0.5955 - val_accuracy: 0.8167 Epoch 64/100 17/17 [==============================] - 1s 57ms/step - loss: 0.4902 - accuracy: 0.8380 - val_loss: 0.5926 - val_accuracy: 0.8250 Epoch 65/100 17/17 [==============================] - 1s 48ms/step - loss: 0.4853 - accuracy: 0.8444 - val_loss: 0.5882 - val_accuracy: 0.8083 Epoch 66/100 17/17 [==============================] - 1s 48ms/step - loss: 0.4794 - accuracy: 0.8472 - val_loss: 0.5839 - val_accuracy: 0.8083 Epoch 67/100 17/17 [==============================] - 1s 44ms/step - loss: 0.4724 - accuracy: 0.8519 - val_loss: 0.5809 - val_accuracy: 0.8167 Epoch 68/100 17/17 [==============================] - 1s 54ms/step - loss: 0.4680 - accuracy: 0.8528 - val_loss: 0.5760 - val_accuracy: 0.8083 Epoch 69/100 17/17 [==============================] - 1s 46ms/step - loss: 0.4623 - accuracy: 0.8546 - val_loss: 0.5719 - val_accuracy: 0.8250 Epoch 70/100 17/17 [==============================] - 1s 49ms/step - loss: 0.4559 - accuracy: 0.8574 - val_loss: 0.5692 - val_accuracy: 0.8083 Epoch 71/100 17/17 [==============================] - 1s 57ms/step - loss: 0.4518 - accuracy: 0.8593 - val_loss: 0.5650 - val_accuracy: 0.8083 Epoch 72/100 17/17 [==============================] - 1s 60ms/step - loss: 0.4452 - accuracy: 0.8620 - val_loss: 0.5624 - val_accuracy: 0.8250 Epoch 73/100 17/17 [==============================] - 1s 52ms/step - loss: 0.4415 - accuracy: 0.8639 - val_loss: 0.5590 - val_accuracy: 0.8167 Epoch 74/100 17/17 [==============================] - 1s 55ms/step - loss: 0.4361 - accuracy: 0.8648 - val_loss: 0.5554 - val_accuracy: 0.8250 Epoch 75/100 17/17 [==============================] - 1s 58ms/step - loss: 0.4298 - accuracy: 0.8704 - val_loss: 0.5528 - val_accuracy: 0.8333 Epoch 76/100 17/17 [==============================] - 1s 62ms/step - loss: 0.4262 - accuracy: 0.8685 - val_loss: 0.5490 - val_accuracy: 0.8250 Epoch 77/100 17/17 [==============================] - 1s 48ms/step - loss: 0.4215 - accuracy: 0.8713 - val_loss: 0.5460 - val_accuracy: 0.8250 Epoch 78/100 17/17 [==============================] - 1s 46ms/step - loss: 0.4151 - accuracy: 0.8787 - val_loss: 0.5436 - val_accuracy: 0.8250 Epoch 79/100 17/17 [==============================] - 1s 43ms/step - loss: 0.4113 - accuracy: 0.8787 - val_loss: 0.5407 - val_accuracy: 0.8167 Epoch 80/100 17/17 [==============================] - 1s 43ms/step - loss: 0.4062 - accuracy: 0.8806 - val_loss: 0.5384 - val_accuracy: 0.8167 Epoch 81/100 17/17 [==============================] - 1s 48ms/step - loss: 0.4020 - accuracy: 0.8806 - val_loss: 0.5348 - val_accuracy: 0.8167 Epoch 82/100 17/17 [==============================] - 1s 50ms/step - loss: 0.3962 - accuracy: 0.8824 - val_loss: 0.5323 - val_accuracy: 0.8167 Epoch 83/100 17/17 [==============================] - 1s 45ms/step - loss: 0.3927 - accuracy: 0.8824 - val_loss: 0.5297 - val_accuracy: 0.8250 Epoch 84/100 17/17 [==============================] - 1s 51ms/step - loss: 0.3881 - accuracy: 0.8843 - val_loss: 0.5272 - val_accuracy: 0.8250 Epoch 85/100 17/17 [==============================] - 1s 46ms/step - loss: 0.3832 - accuracy: 0.8870 - val_loss: 0.5249 - val_accuracy: 0.8250 Epoch 86/100 17/17 [==============================] - 1s 53ms/step - loss: 0.3796 - accuracy: 0.8898 - val_loss: 0.5215 - val_accuracy: 0.8250 Epoch 87/100 17/17 [==============================] - 1s 56ms/step - loss: 0.3743 - accuracy: 0.8889 - val_loss: 0.5196 - val_accuracy: 0.8250 Epoch 88/100 17/17 [==============================] - 1s 48ms/step - loss: 0.3710 - accuracy: 0.8907 - val_loss: 0.5164 - val_accuracy: 0.8250 Epoch 89/100 17/17 [==============================] - 1s 45ms/step - loss: 0.3660 - accuracy: 0.8917 - val_loss: 0.5139 - val_accuracy: 0.8333 Epoch 90/100 17/17 [==============================] - 1s 45ms/step - loss: 0.3626 - accuracy: 0.8917 - val_loss: 0.5106 - val_accuracy: 0.8333 Epoch 91/100 17/17 [==============================] - 1s 48ms/step - loss: 0.3579 - accuracy: 0.8944 - val_loss: 0.5090 - val_accuracy: 0.8500 Epoch 92/100 17/17 [==============================] - 1s 49ms/step - loss: 0.3547 - accuracy: 0.8935 - val_loss: 0.5060 - val_accuracy: 0.8417 Epoch 93/100 17/17 [==============================] - 1s 44ms/step - loss: 0.3501 - accuracy: 0.8944 - val_loss: 0.5038 - val_accuracy: 0.8500 Epoch 94/100 17/17 [==============================] - 1s 47ms/step - loss: 0.3468 - accuracy: 0.8954 - val_loss: 0.5014 - val_accuracy: 0.8417 Epoch 95/100 17/17 [==============================] - 1s 43ms/step - loss: 0.3424 - accuracy: 0.8954 - val_loss: 0.4996 - val_accuracy: 0.8500 Epoch 96/100 17/17 [==============================] - 1s 64ms/step - loss: 0.3395 - accuracy: 0.8963 - val_loss: 0.4970 - val_accuracy: 0.8417 Epoch 97/100 17/17 [==============================] - 1s 47ms/step - loss: 0.3351 - accuracy: 0.9000 - val_loss: 0.4950 - val_accuracy: 0.8417 Epoch 98/100 17/17 [==============================] - 1s 54ms/step - loss: 0.3323 - accuracy: 0.8981 - val_loss: 0.4933 - val_accuracy: 0.8333 Epoch 99/100 17/17 [==============================] - 1s 48ms/step - loss: 0.3280 - accuracy: 0.9000 - val_loss: 0.4916 - val_accuracy: 0.8417 Epoch 100/100 17/17 [==============================] - 1s 57ms/step - loss: 0.3251 - accuracy: 0.9028 - val_loss: 0.4894 - val_accuracy: 0.8333
history对象是.fit()操作的输出,并提供内存中所有损失和度量值的记录。它存储为字典,您可以在history中检索。history:
{'loss': [1.7924431562423706, 1.7829910516738892, 1.7774927616119385, 1.7714649438858032, 1.7632440328598022, 1.7526339292526245, 1.7386524677276611, 1.7180964946746826, 1.6927790641784668, 1.662406325340271, 1.6234209537506104, 1.5787827968597412, 1.530578374862671, 1.4795559644699097, 1.4249759912490845, 1.366114616394043, 1.306186556816101, 1.2475863695144653, 1.1895930767059326, 1.1388928890228271, 1.097584843635559, 1.0567398071289062, 1.022887110710144, 0.988143265247345, 0.958622932434082, 0.9344858527183533, 0.9079993367195129, 0.885870635509491, 0.8637591600418091, 0.8459751605987549, 0.8278167247772217, 0.8083643913269043, 0.7896391153335571, 0.7741439938545227, 0.7585340142250061, 0.7439262866973877, 0.7297463417053223, 0.7170448303222656, 0.7035995125770569, 0.6920593976974487, 0.679717481136322, 0.6682245135307312, 0.6566773653030396, 0.6468732953071594, 0.636225163936615, 0.6263309121131897, 0.6172266602516174, 0.6075870990753174, 0.5992370247840881, 0.590358316898346, 0.5821788907051086, 0.5736473798751831, 0.5663847327232361, 0.5585536956787109, 0.5508677959442139, 0.5444035530090332, 0.5386385917663574, 0.5295939445495605, 0.5240201354026794, 0.5174545049667358, 0.5093420743942261, 0.5043843984603882, 0.4980504810810089, 0.4902321696281433, 0.48526430130004883, 0.4794261157512665, 0.47238555550575256, 0.4679552912712097, 0.4623057246208191, 0.45586806535720825, 0.4517609477043152, 0.4452061355113983, 0.4414933919906616, 0.43607473373413086, 0.42984598875045776, 0.426226943731308, 0.42150384187698364, 0.41507458686828613, 0.411263108253479, 0.40617814660072327, 0.4020026624202728, 0.3962164521217346, 0.3927241563796997, 0.388070285320282, 0.3831581771373749, 0.3795756697654724, 0.3743235170841217, 0.370996356010437, 0.36598825454711914, 0.36259210109710693, 0.3579387068748474, 0.3546842932701111, 0.3501478433609009, 0.3468477129936218, 0.3424193859100342, 0.33947113156318665, 0.33507341146469116, 0.33227092027664185, 0.3280133008956909, 0.3250682055950165], 'accuracy': [0.18703703582286835, 0.23888888955116272, 0.25740739703178406, 0.2620370388031006, 0.31018519401550293, 0.35185185074806213, 0.3731481432914734, 0.39351850748062134, 0.42500001192092896, 0.4472222328186035, 0.4722222089767456, 0.4833333194255829, 0.5027777552604675, 0.519444465637207, 0.5370370149612427, 0.5574073791503906, 0.5694444179534912, 0.5981481671333313, 0.6277777552604675, 0.6425926089286804, 0.6518518328666687, 0.6564815044403076, 0.6685185432434082, 0.6722221970558167, 0.6879629492759705, 0.6953703761100769, 0.7009259462356567, 0.7120370268821716, 0.7212963104248047, 0.7324073910713196, 0.7388888597488403, 0.7425925731658936, 0.7509258985519409, 0.7537037134170532, 0.7564814686775208, 0.7638888955116272, 0.769444465637207, 0.7740740776062012, 0.7731481194496155, 0.7824074029922485, 0.7842592597007751, 0.7916666865348816, 0.7962962985038757, 0.7990740537643433, 0.8009259104728699, 0.8018518686294556, 0.8064814805984497, 0.8083333373069763, 0.8101851940155029, 0.8092592358589172, 0.8120370507240295, 0.8157407641410828, 0.8203703761100769, 0.8194444179534912, 0.8203703761100769, 0.8222222328186035, 0.8222222328186035, 0.8296296000480652, 0.8296296000480652, 0.8333333134651184, 0.835185170173645, 0.8370370268821716, 0.8333333134651184, 0.8379629850387573, 0.8444444537162781, 0.8472222089767456, 0.8518518805503845, 0.8527777791023254, 0.854629635810852, 0.8574073910713196, 0.8592592477798462, 0.8620370626449585, 0.8638888597488403, 0.864814817905426, 0.8703703880310059, 0.8685185313224792, 0.8712962865829468, 0.8787037134170532, 0.8787037134170532, 0.8805555701255798, 0.8805555701255798, 0.8824074268341064, 0.8824074268341064, 0.8842592835426331, 0.8870370388031006, 0.8898147940635681, 0.8888888955116272, 0.8907407522201538, 0.8916666507720947, 0.8916666507720947, 0.894444465637207, 0.8935185074806213, 0.894444465637207, 0.895370364189148, 0.895370364189148, 0.8962963223457336, 0.8999999761581421, 0.8981481194496155, 0.8999999761581421, 0.9027777910232544], 'val_loss': [1.7880679368972778, 1.7836401462554932, 1.7796905040740967, 1.7741940021514893, 1.7678734064102173, 1.758245825767517, 1.7452706098556519, 1.726967692375183, 1.702684998512268, 1.6717331409454346, 1.6347414255142212, 1.5910009145736694, 1.5450935363769531, 1.4938915967941284, 1.4376522302627563, 1.3787978887557983, 1.3131662607192993, 1.2557700872421265, 1.2034367322921753, 1.1515480279922485, 1.111528754234314, 1.0731432437896729, 1.0447036027908325, 1.0127633810043335, 0.9859100580215454, 0.9654880166053772, 0.9404958486557007, 0.9209955930709839, 0.8992679119110107, 0.8814808130264282, 0.8653653860092163, 0.8504172563552856, 0.8345377445220947, 0.8210867643356323, 0.8074197173118591, 0.7955043315887451, 0.7829695343971252, 0.7711904048919678, 0.759569525718689, 0.7491328120231628, 0.738180935382843, 0.7290382385253906, 0.7184242010116577, 0.7106221914291382, 0.7016199827194214, 0.6938892006874084, 0.6858749985694885, 0.6783573031425476, 0.6711333394050598, 0.6637560129165649, 0.6570908427238464, 0.6508013606071472, 0.6447855234146118, 0.6384889483451843, 0.6340672969818115, 0.6277063488960266, 0.6241180300712585, 0.6192630529403687, 0.6140884757041931, 0.6084011197090149, 0.6047238707542419, 0.5990610122680664, 0.5955398678779602, 0.5925867557525635, 0.5882076025009155, 0.5839186310768127, 0.5809137225151062, 0.5759595632553101, 0.5718620419502258, 0.5692002773284912, 0.5650399327278137, 0.5624229907989502, 0.5589754581451416, 0.5554342865943909, 0.5528450012207031, 0.548973798751831, 0.5460191965103149, 0.5436446070671082, 0.5407302379608154, 0.5384419560432434, 0.5347636938095093, 0.5323173999786377, 0.5297467112541199, 0.5271559953689575, 0.5248605608940125, 0.5214855074882507, 0.5195692181587219, 0.5163654685020447, 0.5138646960258484, 0.5105695128440857, 0.5090406537055969, 0.506039023399353, 0.5038312077522278, 0.5013726353645325, 0.4996020495891571, 0.4970282018184662, 0.49498558044433594, 0.4933158755302429, 0.49158433079719543, 0.4893797039985657], 'val_accuracy': [0.19166666269302368, 0.22499999403953552, 0.19166666269302368, 0.23333333432674408, 0.2916666567325592, 0.3499999940395355, 0.34166666865348816, 0.3333333432674408, 0.36666667461395264, 0.375, 0.4166666567325592, 0.46666666865348816, 0.5083333253860474, 0.5, 0.5416666865348816, 0.574999988079071, 0.6083333492279053, 0.5833333134651184, 0.6166666746139526, 0.6416666507720947, 0.6416666507720947, 0.625, 0.6333333253860474, 0.6416666507720947, 0.6499999761581421, 0.6499999761581421, 0.6583333611488342, 0.6666666865348816, 0.6666666865348816, 0.6666666865348816, 0.6666666865348816, 0.675000011920929, 0.6833333373069763, 0.699999988079071, 0.7083333134651184, 0.7083333134651184, 0.7083333134651184, 0.7250000238418579, 0.7333333492279053, 0.7416666746139526, 0.7583333253860474, 0.7666666507720947, 0.7749999761581421, 0.7749999761581421, 0.7749999761581421, 0.7749999761581421, 0.7833333611488342, 0.7916666865348816, 0.7916666865348816, 0.800000011920929, 0.800000011920929, 0.8083333373069763, 0.8083333373069763, 0.8083333373069763, 0.8083333373069763, 0.800000011920929, 0.800000011920929, 0.8166666626930237, 0.800000011920929, 0.8083333373069763, 0.824999988079071, 0.8083333373069763, 0.8166666626930237, 0.824999988079071, 0.8083333373069763, 0.8083333373069763, 0.8166666626930237, 0.8083333373069763, 0.824999988079071, 0.8083333373069763, 0.8083333373069763, 0.824999988079071, 0.8166666626930237, 0.824999988079071, 0.8333333134651184, 0.824999988079071, 0.824999988079071, 0.824999988079071, 0.8166666626930237, 0.8166666626930237, 0.8166666626930237, 0.8166666626930237, 0.824999988079071, 0.824999988079071, 0.824999988079071, 0.824999988079071, 0.824999988079071, 0.824999988079071, 0.8333333134651184, 0.8333333134651184, 0.8500000238418579, 0.8416666388511658, 0.8500000238418579, 0.8416666388511658, 0.8500000238418579, 0.8416666388511658, 0.8416666388511658, 0.8333333134651184, 0.8416666388511658, 0.8333333134651184]} 现在,使用history.history可视化时间损失:
df_loss_acc = pd.DataFrame(history.history) df_loss = df_loss_acc[[' loss ' ,' val_loss ' ]] df_loss.rename(columns ={' loss ' :' train ' ,' val_loss ' :' validation ' },inplace=True) df_acc = df_loss_acc[[' accuracy ' ,' val_accuracy ' ]] df_acc.rename(columns ={' accuracy ' :' train ' ,' val_accuracy ' :' validation ' },inplace=True) df_loss.plot(title =' Model loss ' ,figsize=(12,8)).set(xlabel=' Epoch ' ,ylabel=' Loss ' ) df_acc.plot(title =' Model Accuracy ' ,figsize=(12,8)).set(xlabel=' Epoch ' ,ylabel=' Accuracy ' ) plt.show()