论文信息
论文标题:Graph U-Nets
论文作者:Hongyang Gao, Shuiwang Ji
论文来源:2019,ICML
论文地址:download
论文代码:download
1 Introduction
受到类似 encoder-decoder architecture 的 U-Nets 影响,作者希望能在图数据上使用这种 pooling 和 up-sampling 的操作。
2 Graph U-Nets
本节依次介绍 graph pooling (gPool) layer, graph unpooling (gUnpool) layer,然后介绍本文用于节点分类的 U-Nets 。
2.1 Graph Pooling Layer
本文提出利用投影向量 $mathbf{p}$ 来计算图中各个节点的重要性,并且 $mathbf{p}$ 是可训练的参数,不需要认为指定。假设节点的嵌入向量为 $mathbf{x}_{mathrm{i}}$ , 它在向量 $mathbf{p}$ 上的投影为 $mathrm{y}_{mathrm{i}}=mathbf{x}_{mathrm{i}} mathbf{p} /|mathbf{p}|$, $mathrm{y}_{mathrm{i}}$ 可以作为衡量节点重要性的度量。
$mathrm{gPool}$ 计算过程为:
$begin{array}{l}mathbf{y} &=&X^{ell} mathbf{p}^{ell} /left|mathbf{p}^{ell}right| \mathrm{idx} &=&operatorname{rank}(mathbf{y}, k) \tilde{mathbf{y}} &=&operatorname{sigmoid}(mathbf{y}(mathrm{idx})) \tilde{X}^{ell} &=&X^{ell}(mathrm{idx},:) \A^{ell+1} &=&A^{ell}(mathrm{idx}, mathrm{idx}) \X^{ell+1} &=&tilde{X}^{ell} odotleft(tilde{mathbf{y}} mathbf{1}_{C}^{T}right)end{array}$
图示如下:
2.2 Graph Unpooling Layer
为在图数据上实现 up-sampling 操作,本文提出 graph unpooling (gUnpool) layer。
在形式上,gUnpool 的层级传播规则为:
$X^{ell+1}=operatorname{distribute}left(0_{N times C}, X^{ell}, mathrm{idx}right)$
其中,
-
- $idx in mathbb{Z}^{* k}$ 包含在相应的 gPool 层中所选节点的索引,从而将图的大小从 $N$ 个节点减少到 $k$ 个节点;
- $X^{ell} in mathbb{R}^{k times C}$ 是当前图的特征矩阵;
- $0_{N times C}$ 是新图的 0 填充的特征矩阵;
- $idx in mathbb{Z}^{* k}$ 包含在相应的 gPool 层中所选节点的索引,从而将图的大小从 $N$ 个节点减少到 $k$ 个节点;
Note:在 $X^{ell+1}$ 中,$idx$ 中具有索引的行向量由 $X^{ell}$ 中的行向量更新,而其他行向量保持为零。
2.3 Graph U-Nets Architecture
如图所示:
2.4 Graph Connectivity Augmentation via Graph Power
在 gPool 层中,对一些重要的节点进行采样,形成一个新的特征编码图。由于在删除 gPool 中的节点时相关边被删除,所以 pooled graph 中可能形成孤立点。可能会影响信息在后续层中的传播,特别是当使用 GCN 层来聚合来自邻近节点的信息时。所以需要增加 pooled graph 中节点之间的连通性。
为了解决上述问题,使用第 $k$ 个图的幂 $mathbb{G}^{k}$ 来增加图的连通性。文中使用 $k = 2$ ,替换计算过程中的 $A^{ell+1}$:
$A^{2}=A^{ell} A^{ell}, quad A^{ell+1}=A^{2}(mathrm{idx}, mathrm{idx})$
2.5 Improved GCN Layer
在 $mathrm{GCN}$ 中邻接矩阵 $hat{mathrm{A}}=mathrm{A}+mathrm{I}$ , 论文中改为 $hat{mathrm{A}}=mathrm{A}+2 mathrm{I}$,给予中心节点更大的权重。
3 Experimental Study
数据集
节点分类
图分类
4 Conclusion
在这项工作中,我们提出了g-U-Nets网络中新的 gPool 和 gUnpool 层用于网络嵌入。gPool 层对图形数据实现了规则的全局 k-max 池化操作。它对重要节点的子集进行采样,以实现高级特征编码和接受域扩大。通过使用一个可训练的投影向量,gPool层根据其标量投影值对节点进行采样。此外,我们提出了对图数据应用非池操作的gUnpool层。利用原图中节点的位置信息,gUnpool 层对相应的 gPool 层进行逆操作,恢复原图的结构。基于我们的 gPool 和 gUnpool 层,我们提出了图 U-Nets(gU-Nets) 结构,它在图像数据上使用与常规U-Net类似的编码-解码器结构。实验结果表明,与其他gnn相比,我们的g-u-net在转换学习任务上实现了性能的提高。为了避免采样图中可能存在的孤立节点问题,我们采用第二图幂来提高图的连通性。对消融术的研究表明了这些贡献