源码解析springbatch的job是如何运行的?

202208-源码解析springbatch的job是如何运行的?

注,本文中的demo代码节选于图书《Spring Batch批处理框架》的配套源代码,并做并适配springboot升级版本,完全开源。

SpringBatch的背景和用法,就不再赘述了,默认本文受众都使用过batch框架。
本文仅讨论普通的ChunkStep,分片/异步处理等功能暂不讨论。

1. 表结构

Spring系列的框架代码,大多又臭又长,让人头晕。先列出整体流程,再去看源码。顺带也可以了解存储表结构。

  1. 每一个jobname,加运行参数的MD5值,被定义为一个job_instance,存储在batch_job_instance表中;
  2. job_instance每次运行时,会创建一个新的job_execution,存储在batch_job_execution / batch_job_execution_context 表中;
    1. 扩展:任务重启时,如何续作? 答,判定为任务续作,创建新的job_execution时,会使用旧job_execution的运行态ExecutionContext(通俗讲,火车出故障只换了车头,车厢货物不变。)
  3. job_execution会根据job排程中的step顺序,逐个执行,逐个转化为step_execution,并存储在batch_step_execution / batch_step_execution_context表中
  4. 每个step在执行时,会维护step运行状态,当出现异常或者整个step清单执行完成,会更新job_execution的状态
  5. 在每个step执行前后、job_execution前后,都会通知Listener做回调。

框架使用的表

batch_job_instance batch_job_execution batch_job_execution_context batch_job_execution_params batch_step_execution batch_step_execution_context batch_job_seq batch_step_execution_seq batch_job_execution_seq 

2. API入口

先看看怎么调用启动Job的API,看起来非常简单,传入job信息和参数即可

    @Autowired     @Qualifier("billJob")     private Job job;          @Test     public void billJob() throws Exception {         JobParameters jobParameters = new JobParametersBuilder()                 .addLong("currentTimeMillis", System.currentTimeMillis())                 .addString("batchNo","2022080402")                 .toJobParameters();         JobExecution result = jobLauncher.run(job, jobParameters);         System.out.println(result.toString());          Thread.sleep(6000);     } 
    <!-- 账单作业 -->     <batch:job id="billJob">         <batch:step id="billStep">             <batch:tasklet transaction-manager="transactionManager">                 <batch:chunk reader="csvItemReader" writer="csvItemWriter" processor="creditBillProcessor" commit-interval="3">                 </batch:chunk>             </batch:tasklet>         </batch:step>     </batch:job> 

org.springframework.batch.core.launch.support.SimpleJobLauncher#run

// 简化部分代码(参数检查、log日志) @Override public JobExecution run(final Job job, final JobParameters jobParameters){ 	final JobExecution jobExecution; 	JobExecution lastExecution = jobRepository.getLastJobExecution(job.getName(), jobParameters);        // 上次执行存在,说明本次请求是重启job,先做检查 	if (lastExecution != null) { 		if (!job.isRestartable()) { 			throw new JobRestartException("JobInstance already exists and is not restartable"); 		} 		/* 检查stepExecutions的状态 		 * validate here if it has stepExecutions that are UNKNOWN, STARTING, STARTED and STOPPING 		 * retrieve the previous execution and check 		 */ 		for (StepExecution execution : lastExecution.getStepExecutions()) { 			BatchStatus status = execution.getStatus(); 			if (status.isRunning() || status == BatchStatus.STOPPING) { 				throw new JobExecutionAlreadyRunningException("A job execution for this job is already running: " 						+ lastExecution); 			} else if (status == BatchStatus.UNKNOWN) { 				throw new JobRestartException( 						"Cannot restart step [" + execution.getStepName() + "] from UNKNOWN status. "); 			} 		} 	} 	// Check jobParameters 	job.getJobParametersValidator().validate(jobParameters);        // 创建JobExecution 同一个job+参数,只能有一个Execution执行器 	jobExecution = jobRepository.createJobExecution(job.getName(), jobParameters); 	try {            // SyncTaskExecutor 看似是异步,实际是同步执行(可扩展) 		taskExecutor.execute(new Runnable() { 			@Override 			public void run() { 				try {                        // 关键入口,请看[org.springframework.batch.core.job.AbstractJob#execute] 					job.execute(jobExecution); 					if (logger.isInfoEnabled()) { 						Duration jobExecutionDuration = BatchMetrics.calculateDuration(jobExecution.getStartTime(), jobExecution.getEndTime()); 					} 				} 				catch (Throwable t) { 					rethrow(t); 				} 			} 			private void rethrow(Throwable t) {                    // 省略各类抛异常 				throw new IllegalStateException(t); 			} 		}); 	} 	catch (TaskRejectedException e) {         // 更新job_execution的运行状态 		jobExecution.upgradeStatus(BatchStatus.FAILED); 		if (jobExecution.getExitStatus().equals(ExitStatus.UNKNOWN)) { 			jobExecution.setExitStatus(ExitStatus.FAILED.addExitDescription(e)); 		} 		jobRepository.update(jobExecution); 	} 	return jobExecution; }  

3. 深入代码流程

简单看看API入口,子类划分较多,继续往后看

总体代码流程

  1. org.springframework.batch.core.launch.support.SimpleJobLauncher#run 入口api,构建jobExecution
  2. org.springframework.batch.core.job.AbstractJob#execute 对jobExecution进行执行、listener的前置处理
  3. FlowJob#doExecute -> SimpleFlow#start 按顺序逐个处理Step、构建stepExecution
  4. JobFlowExecutor#executeStep -> SimpleStepHandler#handleStep -> AbstractStep#execute 执行stepExecution
  5. TaskletStep#doExecute 通过RepeatTemplate,调用TransactionTemplate方法,在事务中执行
    1. 内部类TaskletStep.ChunkTransactionCallback#doInTransaction
  6. 反复调起ChunkOrientedTasklet#execute 去执行read-process-writer方法,
    1. 通过自定义的Reader得到inputs,例如本文实现的是flatReader读取csv文件
    2. 遍历inputs,将item逐个传入,调用processor处理
    3. 调用writer,将outputs一次性写入
    4. 不同reader的实现内容不同,通过缓存读取的行数等信息,可做到分片、按数量处理chunk

JobExecution的处理过程

org.springframework.batch.core.job.AbstractJob#execute

 /** 运行给定的job,处理全部listener和DB存储的调用 * Run the specified job, handling all listener and repository calls, and * delegating the actual processing to {@link #doExecute(JobExecution)}. * * @see Job#execute(JobExecution) * @throws StartLimitExceededException *             if start limit of one of the steps was exceeded */ @Ovrride public final void execute(JobExecution execution) {      // 同步控制器,防并发执行     JobSynchronizationManager.register(execution);     // 计时器,记录耗时     LongTaskTimer longTaskTimer = BatchMetrics.createLongTaskTimer("job.active", "Active jobs",             Tag.of("name", execution.getJobInstance().getJobName()));     LongTaskTimer.Sample longTaskTimerSample = longTaskTimer.start();     Timer.Sample timerSample = BatchMetrics.createTimerSample();      try {         // 参数再次进行校验         jobParametersValidator.validate(execution.getJobParameters());          if (execution.getStatus() != BatchStatus.STOPPING) {              // 更新db中任务状态             execution.setStartTime(new Date());             updateStatus(execution, BatchStatus.STARTED);             // 回调所有listener的beforeJob方法             listener.beforeJob(execution);              try {                 doExecute(execution);             } catch (RepeatException e) {                 throw e.getCause(); // 搞不懂这里包一个RepeatException 有啥用             }         } else {             // 任务状态时BatchStatus.STOPPING,说明任务已经停止,直接改成STOPPED             // The job was already stopped before we even got this far. Deal             // with it in the same way as any other interruption.             execution.setStatus(BatchStatus.STOPPED);             execution.setExitStatus(ExitStatus.COMPLETED);         }      } catch (JobInterruptedException e) {         // 任务被打断 STOPPED         execution.setExitStatus(getDefaultExitStatusForFailure(e, execution));         execution.setStatus(BatchStatus.max(BatchStatus.STOPPED, e.getStatus()));         execution.addFailureException(e);     } catch (Throwable t) {         // 其他原因失败 FAILED         logger.error("Encountered fatal error executing job", t);         execution.setExitStatus(getDefaultExitStatusForFailure(t, execution));         execution.setStatus(BatchStatus.FAILED);         execution.addFailureException(t);     } finally {         try {             if (execution.getStatus().isLessThanOrEqualTo(BatchStatus.STOPPED)                     && execution.getStepExecutions().isEmpty()) {                 ExitStatus exitStatus = execution.getExitStatus();                 ExitStatus newExitStatus =                         ExitStatus.NOOP.addExitDescription("All steps already completed or no steps configured for this job.");                 execution.setExitStatus(exitStatus.and(newExitStatus));             }              // 计时器 计算总耗时             timerSample.stop(BatchMetrics.createTimer("job", "Job duration",                     Tag.of("name", execution.getJobInstance().getJobName()),                     Tag.of("status", execution.getExitStatus().getExitCode())             ));             longTaskTimerSample.stop();             execution.setEndTime(new Date());              try {                 // 回调所有listener的afterJob方法  调用失败也不影响任务完成                 listener.afterJob(execution);             } catch (Exception e) {                 logger.error("Exception encountered in afterJob callback", e);             }             // 写入db             jobRepository.update(execution);         } finally {             // 释放控制             JobSynchronizationManager.release();         }      }  } 

3.2何时调用Reader?

在SimpleChunkProvider#provide中会分次调用reader,并将结果包装为Chunk返回。

其中有几个细节,此处不再赘述。

  1. 如何控制一次读取几个item?
  2. 如何控制最后一行读完就不读了?
  3. 如果需要跳过文件头的前N行,怎么处理?
  4. 在StepContribution中记录读取数量
org.springframework.batch.core.step.item.SimpleChunkProcessor#process  	@Nullable 	@Override 	public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) throws Exception {  		@SuppressWarnings("unchecked") 		Chunk<I> inputs = (Chunk<I>) chunkContext.getAttribute(INPUTS_KEY); 		if (inputs == null) { 			inputs = chunkProvider.provide(contribution); 			if (buffering) { 				chunkContext.setAttribute(INPUTS_KEY, inputs); 			} 		}  		chunkProcessor.process(contribution, inputs); 		chunkProvider.postProcess(contribution, inputs);  		// Allow a message coming back from the processor to say that we 		// are not done yet 		if (inputs.isBusy()) { 			logger.debug("Inputs still busy"); 			return RepeatStatus.CONTINUABLE; 		}  		chunkContext.removeAttribute(INPUTS_KEY); 		chunkContext.setComplete();  		if (logger.isDebugEnabled()) { 			logger.debug("Inputs not busy, ended: " + inputs.isEnd()); 		} 		return RepeatStatus.continueIf(!inputs.isEnd());  	} 

3.3何时调用Processor/Writer?

在RepeatTemplate和外围事务模板的包装下,通过SimpleChunkProcessor进行处理:

  1. 查出若干条数的items,打包为Chunk
  2. 遍历items,逐个item调用processor
    1. 通知StepListener,环绕处理调用before/after方法
    // 忽略无关代码... 	@Override 	public final void process(StepContribution contribution, Chunk<I> inputs) throws Exception {  		// 输入为空,直接返回If there is no input we don't have to do anything more 		if (isComplete(inputs)) { 			return; 		}  		// Make the transformation, calling remove() on the inputs iterator if 		// any items are filtered. Might throw exception and cause rollback. 		Chunk<O> outputs = transform(contribution, inputs);  		// Adjust the filter count based on available data 		contribution.incrementFilterCount(getFilterCount(inputs, outputs));  		// Adjust the outputs if necessary for housekeeping purposes, and then 		// write them out... 		write(contribution, inputs, getAdjustedOutputs(inputs, outputs));  	}      // 遍历items,逐个item调用processor 	protected Chunk<O> transform(StepContribution contribution, Chunk<I> inputs) throws Exception { 		Chunk<O> outputs = new Chunk<>(); 		for (Chunk<I>.ChunkIterator iterator = inputs.iterator(); iterator.hasNext();) { 			final I item = iterator.next(); 			O output; 			String status = BatchMetrics.STATUS_SUCCESS; 			try { 				output = doProcess(item); 			} 			catch (Exception e) { 				/* 				 * For a simple chunk processor (no fault tolerance) we are done here, so prevent any more processing of these inputs. 				 */ 				inputs.clear(); 				status = BatchMetrics.STATUS_FAILURE; 				throw e; 			} 			if (output != null) { 				outputs.add(output); 			} 			else { 				iterator.remove(); 			} 		} 		return outputs; 	}  

4. 每个step是如何与事务处理挂钩?

在TaskletStep#doExecute中会使用TransactionTemplate,包装事务操作

标准的事务操作,通过函数式编程风格,从action的CallBack调用实际处理方法

  1. 通过transactionManager获取事务
  2. 执行操作
  3. 无异常,则提交事务
  4. 若异常,则回滚
    // org.springframework.batch.core.step.tasklet.TaskletStep#doExecute     result = new TransactionTemplate(transactionManager, transactionAttribute) 				    .execute(new ChunkTransactionCallback(chunkContext, semaphore));      // 事务启用过程     // org.springframework.transaction.support.TransactionTemplate#execute 	@Override 	@Nullable 	public <T> T execute(TransactionCallback<T> action) throws TransactionException { 		Assert.state(this.transactionManager != null, "No PlatformTransactionManager set");  		if (this.transactionManager instanceof CallbackPreferringPlatformTransactionManager) { 			return ((CallbackPreferringPlatformTransactionManager) this.transactionManager).execute(this, action); 		} 		else { 			TransactionStatus status = this.transactionManager.getTransaction(this); 			T result; 			try { 				result = action.doInTransaction(status); 			} 			catch (RuntimeException | Error ex) { 				// Transactional code threw application exception -> rollback 				rollbackOnException(status, ex); 				throw ex; 			} 			catch (Throwable ex) { 				// Transactional code threw unexpected exception -> rollback 				rollbackOnException(status, ex); 				throw new UndeclaredThrowableException(ex, "TransactionCallback threw undeclared checked exception"); 			} 			this.transactionManager.commit(status); 			return result; 		} 	} 

5. 怎么控制每个chunk几条记录提交一次事务? 控制每个事务窗口处理的item数量

在配置任务时,有个step级别的参数,[commit-interval],用于每个事务窗口提交的控制被处理的item数量。

RepeatTemplate#executeInternal 在处理单条item后,会查看已处理完的item数量,与配置的chunk数量做比较,如果满足chunk数,则不再继续,准备提交事务。

StepBean在初始化时,会新建SimpleCompletionPolicy(chunkSize会优先使用配置值,默认是5)

在每个chunk处理开始时,都会调用SimpleCompletionPolicy#start新建RepeatContextSupport#count用于计数。

源码(简化) org.springframework.batch.repeat.support.RepeatTemplate#executeInternal

 /**  * Internal convenience method to loop over interceptors and batch  * callbacks.  * @param callback the callback to process each element of the loop.  */ private RepeatStatus executeInternal(final RepeatCallback callback) { 	// Reset the termination policy if there is one...        // 此处会调用completionPolicy.start方法,更新chunk的计数器 	RepeatContext context = start(); 	// Make sure if we are already marked complete before we start then no processing takes place.        // 通过running字段来判断是否继续处理next 	boolean running = !isMarkedComplete(context);        // 省略listeners处理.... 	// Return value, default is to allow continued processing. 	RepeatStatus result = RepeatStatus.CONTINUABLE; 	RepeatInternalState state = createInternalState(context); 	try { 		while (running) { 			/* 			 * Run the before interceptors here, not in the task executor so 			 * that they all happen in the same thread - it's easier for 			 * tracking batch status, amongst other things. 			 */                // 省略listeners处理.... 			if (running) { 				try {                        // callback是实际处理方法,类似函数式编程 					result = getNextResult(context, callback, state); 					executeAfterInterceptors(context, result); 				} 				catch (Throwable throwable) { 					doHandle(throwable, context, deferred); 				}                    // 检查当前chunk是否处理完,决策出是否继续处理下一条item 				// N.B. the order may be important here: 				if (isComplete(context, result) || isMarkedComplete(context) || !deferred.isEmpty() { 					running = false; 				} 			} 		} 		result = result.and(waitForResults(state));            // 省略throwables处理.... 		// Explicitly drop any references to internal state... 		state = null; 	} 	finally {            // 省略代码... 	} 	return result; } 

总结

JSR-352标准定义了Java批处理的基本模型,包含批处理的元数据像 JobExecutions,JobInstances,StepExecutions 等等。通过此类模型,提供了许多基础组件与扩展点:

  1. 完善的基础组件
    1. Spring Batch 有很多的这类组件 例如 ItemReaders,ItemWriters,PartitionHandlers 等等对应各类数据和环境。
  2. 丰富的配置
    1. JSR-352 定义了基于XML的任务设置模型。Spring Batch 提供了基于Java (类型安全的)的配置方式
  3. 可伸缩性
    1. 伸缩性选项-Local Partitioning 已经包含在JSR -352 里面了。但是还应该有更多的选择 ,例如Spring Batch 提供的 Multi-threaded Step,Remote Partitioning ,Parallel Step,Remote Chunking 等等选项
  4. 扩展点
    1. 良好的listener模式,提供step/job运行前后的锚点,以供开发人员个性化处理批处理流程。

2013年, JSR-352标准包含在 JavaEE7中发布,到2022年已近10年,Spring也在探索新的批处理模式, 如Spring Attic /Spring Cloud Data Flow。 https://docs.spring.io/spring-batch/docs/current/reference/html/jsr-352.html

扩展

1. Job/Step运行时的上下文,是如何保存?如何控制?

整个Job在运行时,会将运行信息保存在JobContext中。 类似的,Step运行时也有StepContext。可以在Context中保存一些参数,在任务或者步骤中传递使用。

查看JobContext/StepContext源码,发现仅用了普通变量保存Execution,这个类肯定有线程安全问题。 生产环境中常常出现多个任务并处处理的情况。

SpringBatch用了几种方式来包装并发安全:

  1. 每个job初始化时,通过JobExecution新建了JobContext,每个任务线程都用自己的对象。
  2. 使用JobSynchronizationManager,内含一个ConcurrentHashMap,KEY是JobExecution,VALUE是JobContext
  3. 在任务解释时,会移除当前JobExecution对应的k-v

此处能看到,如果在JobExecution存储大量的业务数据,会导致无法GC回收,导致OOM。所以在上下文中,只应保存精简的数据。

2. step执行时,如果出现异常,如何保护运行状态?

在源码中,使用了各类同步控制和加锁、oldVersion版本拷贝,整体比较复杂(org.springframework.batch.core.step.tasklet.TaskletStep.ChunkTransactionCallback#doInTransaction)

  1. oldVersion版本拷贝:上一次运行出现异常时,本次执行时沿用上次的断点内容
// 节选部分代码 oldVersion = new StepExecution(stepExecution.getStepName(), stepExecution.getJobExecution()); copy(stepExecution, oldVersion);  private void copy(final StepExecution source, final StepExecution target) { 	target.setVersion(source.getVersion()); 	target.setWriteCount(source.getWriteCount()); 	target.setFilterCount(source.getFilterCount()); 	target.setCommitCount(source.getCommitCount()); 	target.setExecutionContext(new ExecutionContext(source.getExecutionContext())); } 
  1. 信号量控制,在每个chunk运行完成后,需先获取锁,再更新stepExecution前
    1. Shared semaphore per step execution, so other step executions can run in parallel without needing the lockSemaphore (org.springframework.batch.core.step.tasklet.TaskletStep#doExecute)
// 省略无关代码 try { 	try {         // 执行w-p-r模型方法 		result = tasklet.execute(contribution, chunkContext); 		if (result == null) { 			result = RepeatStatus.FINISHED; 		} 	} 	catch (Exception e) { 		// 省略... 	} } finally { 	// If the step operations are asynchronous then we need to synchronize changes to the step execution (at a 	// minimum). Take the lock *before* changing the step execution. 	try {         // 获取锁 		semaphore.acquire(); 		locked = true; 	} 	catch (InterruptedException e) { 		logger.error("Thread interrupted while locking for repository update"); 		stepExecution.setStatus(BatchStatus.STOPPED); 		stepExecution.setTerminateOnly(); 		Thread.currentThread().interrupt(); 	} 	stepExecution.apply(contribution); } stepExecutionUpdated = true; stream.update(stepExecution.getExecutionContext()); try {     // 更新上下文、DB中的状态 	// Going to attempt a commit. If it fails this flag will stay false and we can use that later. 	getJobRepository().updateExecutionContext(stepExecution); 	stepExecution.incrementCommitCount(); 	getJobRepository().update(stepExecution); } catch (Exception e) { 	// If we get to here there was a problem saving the step execution and we have to fail. 	String msg = "JobRepository failure forcing rollback"; 	logger.error(msg, e); 	throw new FatalStepExecutionException(msg, e); }  

发表评论

相关文章