零基础学习人工智能—Python—Pytorch学习(十三)

前言

最近学习了一新概念,叫科学发现和科技发明,科学发现是高于科技发明的,而这个说法我觉得还是挺有道理的,我们总说中国的科技不如欧美,但我们实际感觉上,不论建筑,硬件还是软件,理论,我们都已经高于欧美了,那为什么还说我们不如欧美呢?
科学发现是高于科技发明就很好的解释了这个问题,即,我们的在线支付,建筑行业等等,这些都是科技发明,而不是科学发现,而科学发现是引领科技发明的,而欧美在科学发现上远远领先我们,科技发明上虽然领先的不多,但也有很多大幅领先的,比如chatgpt。

说这些的主要目的是想说明,软件开发也是科技发明,所以这个行业的高手,再高的水平,也就那么回事。
也就是说,即便你是清北的,一旦你进入科技发明的队伍,那也就那么回事了。
神经网络并不难,我的这个系列文章就证明了,你完全不会python,完全没学过算法,一样可以在短时间内学会。我个人感觉,一周到一个月之内,都能学会。
所以,会的不必高人一等的看别人,不会的也不用觉得人家是高水平。

本文内容

本文主要介绍结合神经网络进行机器人开发。

准备工作

运行代码前,我们需要先下载nltk包。
首先安装nltk的包。

pip install nltk 

然后下载nltk工具,编写一个py文件,写代码如下:

import nltk nltk.download() 

然后使用管理员打开cmd,运行这个py文件。

C:Projectpython_testgithubPythonTestvenvScriptspython.exe C:Projectpython_testgithubPythonTestrobot_nltkdlnltk.py 

然后弹出界面如下,修改保存地址:
零基础学习人工智能—Python—Pytorch学习(十三)
PS:有资料说可以直接运行 nltk.download('punkt') ,下载我们需要的指定的包,但我没下载成功,我还是全部下载了。

# nltk.download('punkt') #是 NLTK (Natural Language Toolkit) 库中的一个命令,用来下载名为 'punkt' 的资源,通常用于 分词(Tokenization) # nltk.download('popular') #命令会下载 NLTK 中大部分常用的资源,比punkt的资源更多 

代码编写

编写model

首先编写一个NeuralNet(model.py)如下:

import torch.nn as nn class NeuralNet(nn.Module):     def __init__(self, input_size, hidden_size, num_classes):         super(NeuralNet, self).__init__()         self.l1 = nn.Linear(input_size, hidden_size)          self.l2 = nn.Linear(hidden_size, hidden_size)          self.l3 = nn.Linear(hidden_size, num_classes)         self.relu = nn.ReLU()          def forward(self, x):         out = self.l1(x)         out = self.relu(out)         out = self.l2(out)         out = self.relu(out)         out = self.l3(out)         # no activation and no softmax at the end         return out 

然后编写一个工具nltk_utils.py如下:

import numpy as np import nltk  from nltk.stem.porter import PorterStemmer stemmer = PorterStemmer()  def tokenize(sentence):     return nltk.word_tokenize(sentence)   def stem(word):     return stemmer.stem(word.lower())   def bag_of_words(tokenized_sentence, words):     sentence_words = [stem(word) for word in tokenized_sentence]     bag = np.zeros(len(words), dtype=np.float32)     for idx, w in enumerate(words):         if w in sentence_words:              bag[idx] = 1      return bag  a="How long does shipping take?" print(a) a = tokenize(a) print(a)    

这个文件可以直接运行,测试工具内函数的应用。

词干化和token化

词干化就是把单词提取成词干。逻辑如下:

words =["0rganize","organizes", "organizing"] stemmed_words =[stem(w) for w in words] print(stemmed_words) 

过程如下图:

零基础学习人工智能—Python—Pytorch学习(十三)

token化就是把单词转换成token。
下面这段代码就是测试token化。

a="How long does shipping take?" print(a) a = tokenize(a) print(a) 

token化的逻辑大致如下:
零基础学习人工智能—Python—Pytorch学习(十三)

编写测试数据

编写json文件intents.json(英文版)

{   "intents": [     {       "tag": "greeting",       "patterns": [         "Hi",         "Hey",         "How are you",         "Is anyone there?",         "Hello",         "Good day"       ],       "responses": [         "Hey :-)",         "Hello, thanks for visiting",         "Hi there, what can I do for you?",         "Hi there, how can I help?"       ]     },     {       "tag": "goodbye",       "patterns": ["Bye", "See you later", "Goodbye"],       "responses": [         "See you later, thanks for visiting",         "Have a nice day",         "Bye! Come back again soon."       ]     },     {       "tag": "thanks",       "patterns": ["Thanks", "Thank you", "That's helpful", "Thank's a lot!"],       "responses": ["Happy to help!", "Any time!", "My pleasure"]     },     {       "tag": "items",       "patterns": [         "Which items do you have?",         "What kinds of items are there?",         "What do you sell?"       ],       "responses": [         "We sell coffee and tea",         "We have coffee and tea"       ]     },     {       "tag": "payments",       "patterns": [         "Do you take credit cards?",         "Do you accept Mastercard?",         "Can I pay with Paypal?",         "Are you cash only?"       ],       "responses": [         "We accept VISA, Mastercard and Paypal",         "We accept most major credit cards, and Paypal"       ]     },     {       "tag": "delivery",       "patterns": [         "How long does delivery take?",         "How long does shipping take?",         "When do I get my delivery?"       ],       "responses": [         "Delivery takes 2-4 days",         "Shipping takes 2-4 days"       ]     },     {       "tag": "funny",       "patterns": [         "Tell me a joke!",         "Tell me something funny!",         "Do you know a joke?"       ],       "responses": [         "Why did the hipster burn his mouth? He drank the coffee before it was cool.",         "What did the buffalo say when his son left for college? Bison."       ]     }   ] }  

intents_cn.json中文版数据。

{   "intents": [     {       "tag": "greeting",       "patterns": [         "你好",         "嗨",         "您好",         "有谁在吗?",         "你好呀",         "早上好",         "下午好",         "晚上好"       ],       "responses": [         "你好!有什么我可以帮忙的吗?",         "您好!感谢您的光临。",         "嗨!有什么我可以为您效劳的吗?",         "早上好!今天怎么样?"       ]     },     {       "tag": "goodbye",       "patterns": [         "再见",         "拜拜",         "下次见",         "保重",         "晚安"       ],       "responses": [         "再见!希望很快能再次见到你。",         "拜拜!祝你有个愉快的一天。",         "保重!下次见。",         "晚安,祝你做个好梦!"       ]     },     {       "tag": "thanks",       "patterns": [         "谢谢",         "感谢",         "多谢",         "非常感谢"       ],       "responses": [         "不客气!很高兴能帮到你。",         "没问题!随时为您服务。",         "别客气!希望能帮到您。",         "很高兴能帮忙!"       ]     },     {       "tag": "help",       "patterns": [         "你能帮我做什么?",         "你能做什么?",         "你能帮助我吗?",         "我需要帮助",         "能帮我一下吗?"       ],       "responses": [         "我可以帮您回答问题、提供信息,或者进行简单的任务。",         "我能帮助您查询信息、安排任务等。",         "您可以问我问题,或者让我做一些简单的事情。",         "请告诉我您需要的帮助!"       ]     },     {       "tag": "weather",       "patterns": [         "今天天气怎么样?",         "今天的天气如何?",         "天气预报是什么?",         "外面冷吗?",         "天气好不好?"       ],       "responses": [         "今天的天气很好,适合外出!",         "今天天气有点冷,记得穿暖和点。",         "今天天气晴朗,适合去散步。",         "天气晴,温度适宜,非常适合外出。"       ]     },     {       "tag": "about",       "patterns": [         "你是什么?",         "你是谁?",         "你是做什么的?",         "你能做些什么?"       ],       "responses": [         "我是一个聊天机器人,可以回答您的问题和帮助您解决问题。",         "我是一个智能助手,帮助您完成各种任务。",         "我是一个虚拟助手,可以处理简单的任务和查询。",         "我可以帮助您获取信息,或者做一些简单的任务。"       ]     }   ] }  

训练数据

训练数据逻辑如下:

import numpy as np import random import json  import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader  from nltk_utils import bag_of_words, tokenize, stem from model import NeuralNet  with open('intents_cn.json', 'r', encoding='utf-8') as f:     intents = json.load(f)  all_words = [] tags = [] xy = [] # loop through each sentence in our intents patterns for intent in intents['intents']:     tag = intent['tag']     # add to tag list     tags.append(tag)     for pattern in intent['patterns']:         # tokenize each word in the sentence         w = tokenize(pattern)         # add to our words list         all_words.extend(w)         # add to xy pair         xy.append((w, tag))  # stem and lower each word ignore_words = ['?', '.', '!'] all_words = [stem(w) for w in all_words if w not in ignore_words] # remove duplicates and sort all_words = sorted(set(all_words)) tags = sorted(set(tags))  print(len(xy), "patterns") print(len(tags), "tags:", tags) print(len(all_words), "unique stemmed words:", all_words)  # create training data X_train = [] y_train = [] for (pattern_sentence, tag) in xy:     # X: bag of words for each pattern_sentence     bag = bag_of_words(pattern_sentence, all_words)     X_train.append(bag)     # y: PyTorch CrossEntropyLoss needs only class labels, not one-hot     label = tags.index(tag)     y_train.append(label)  X_train = np.array(X_train) y_train = np.array(y_train)  # Hyper-parameters  num_epochs = 1000 batch_size = 8 learning_rate = 0.001 input_size = len(X_train[0]) hidden_size = 8 output_size = len(tags) print(input_size, output_size)  class ChatDataset(Dataset):      def __init__(self):         self.n_samples = len(X_train)         self.x_data = X_train         self.y_data = y_train      # support indexing such that dataset[i] can be used to get i-th sample     def __getitem__(self, index):         return self.x_data[index], self.y_data[index]      # we can call len(dataset) to return the size     def __len__(self):         return self.n_samples  dataset = ChatDataset() train_loader = DataLoader(dataset=dataset,                           batch_size=batch_size,                           shuffle=True,                           num_workers=0)  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  model = NeuralNet(input_size, hidden_size, output_size).to(device)  # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)  # Train the model for epoch in range(num_epochs):     for (words, labels) in train_loader:         words = words.to(device)         labels = labels.to(dtype=torch.long).to(device)                  # Forward pass         outputs = model(words)         # if y would be one-hot, we must apply         # labels = torch.max(labels, 1)[1]         loss = criterion(outputs, labels)                  # Backward and optimize         optimizer.zero_grad()         loss.backward()         optimizer.step()              if (epoch+1) % 100 == 0:         print (f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')   print(f'final loss: {loss.item():.4f}')  data = { "model_state": model.state_dict(), "input_size": input_size, "hidden_size": hidden_size, "output_size": output_size, "all_words": all_words, "tags": tags }  FILE = "data.pth" torch.save(data, FILE)  print(f'training complete. file saved to {FILE}')  

编写使用聊天

编写使用聊天代码如下:

import random import json  import torch  from model import NeuralNet from nltk_utils import bag_of_words, tokenize  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  with open('intents_cn.json', 'r',encoding='utf-8') as json_data:     intents = json.load(json_data)  FILE = "data.pth" data = torch.load(FILE)  input_size = data["input_size"] hidden_size = data["hidden_size"] output_size = data["output_size"] all_words = data['all_words'] tags = data['tags'] model_state = data["model_state"]  model = NeuralNet(input_size, hidden_size, output_size).to(device) model.load_state_dict(model_state) model.eval()  bot_name = "电脑" print("Let's chat! (type 'quit' to exit)") while True:     # sentence = "do you use credit cards?"     sentence = input("我:")     if sentence == "quit":         break      sentence = tokenize(sentence)     X = bag_of_words(sentence, all_words)     X = X.reshape(1, X.shape[0])     X = torch.from_numpy(X).to(device)      output = model(X)     _, predicted = torch.max(output, dim=1)      tag = tags[predicted.item()]      probs = torch.softmax(output, dim=1)     prob = probs[0][predicted.item()]     if prob.item() > 0.75:         for intent in intents['intents']:             if tag == intent["tag"]:                 print(f"{bot_name}: {random.choice(intent['responses'])}")     else:         print(f"{bot_name}: 我不知道") 

运行效果如下:
零基础学习人工智能—Python—Pytorch学习(十三)


传送门:
零基础学习人工智能—Python—Pytorch学习—全集


注:此文章为原创,任何形式的转载都请联系作者获得授权并注明出处!


零基础学习人工智能—Python—Pytorch学习(十三)


若您觉得这篇文章还不错,请点击下方的【推荐】,非常感谢!

https://www.cnblogs.com/kiba/p/18610399

发表评论

相关文章