cornerstone中raft_server_req_handlers源码解析

1.概述

之前说过raft_server是cornerstone的核心,其中充满了很多req的发送,那么follower收到leader的req会怎么处理呢?
本文就是来解析cornerstone中处理req的源码。

2.process_req源码解析

ptr<resp_msg> raft_server::process_req(req_msg& req) {     ptr<resp_msg> resp;     l_->debug(lstrfmt("Receive a %s message from %d with LastLogIndex=%llu, LastLogTerm=%llu, EntriesLength=%d, "                       "CommitIndex=%llu and Term=%llu")                   .fmt(                       __msg_type_str[req.get_type()],                       req.get_src(),                       req.get_last_log_idx(),                       req.get_last_log_term(),                       req.log_entries().size(),                       req.get_commit_idx(),                       req.get_term()));     {         recur_lock(lock_);         if (req.get_type() == msg_type::append_entries_request || req.get_type() == msg_type::vote_request ||             req.get_type() == msg_type::install_snapshot_request)         {             // we allow the server to be continue after term updated to save a round message             update_term(req.get_term());              // Reset stepping down value to prevent this server goes down when leader crashes after sending a             // LeaveClusterRequest             if (steps_to_down_ > 0)             {                 steps_to_down_ = 2;             }         }          if (req.get_type() == msg_type::append_entries_request)         {             resp = handle_append_entries(req);         }         else if (req.get_type() == msg_type::vote_request)         {             resp = handle_vote_req(req);         }         else if (req.get_type() == msg_type::client_request)         {             resp = handle_cli_req(req);         }         else         {             // extended requests             resp = handle_extended_msg(req);         }     }      if (resp)     {         l_->debug(lstrfmt("Response back a %s message to %d with Accepted=%d, Term=%llu, NextIndex=%llu")                       .fmt(                           __msg_type_str[resp->get_type()],                           resp->get_dst(),                           resp->get_accepted() ? 1 : 0,                           resp->get_term(),                           resp->get_next_idx()));     }      return resp; }  ptr<resp_msg> raft_server::handle_extended_msg(req_msg& req) {     switch (req.get_type())     {         case msg_type::add_server_request:             return handle_add_srv_req(req);         case msg_type::remove_server_request:             return handle_rm_srv_req(req);         case msg_type::sync_log_request:             return handle_log_sync_req(req);         case msg_type::join_cluster_request:             return handle_join_cluster_req(req);         case msg_type::leave_cluster_request:             return handle_leave_cluster_req(req);         case msg_type::install_snapshot_request:             return handle_install_snapshot_req(req);         case msg_type::prevote_request:             return handle_prevote_req(req);         default:             l_->err(                 sstrfmt("receive an unknown request %s, for safety, step down.").fmt(__msg_type_str[req.get_type()]));             ctx_->state_mgr_->system_exit(-1);             ::exit(-1);             break;     }      return ptr<resp_msg>(); } 
  • 1.判断是不是append-entry,vote或者install-snapshot类型请求,如果是可以用req的term来更新自己,同时更新step_down = 2。
  • 2.接着便是用switch来分流处理req。

知识点:
这里更新term的方法很巧妙,append-entry或者install-snapshot都是用于leader与follower数据间的同步。在election结束后,follower其实是不知道election是否已经结束。为了更新自己的term,follower不采用轮询election是否结束这样占用时间且低效的方式更新term,而是采用事件驱动模型,收到append-entry或install-snapshot的rpc请求后顺带更新term,高效快捷。而对于vote_request也更新自己的term则是考虑到了在网络分区的情况下某些节点可能一直处于candidate状态,在某个时间点网络又正常了,这时候通过vote_request便可以更新term到最新状态。(对于append-entry或者install-snapshot也可以帮助网络分区的节点在网络恢复后更新自己的term。)

3.handle_append_entries源码解析

ptr<resp_msg> raft_server::handle_append_entries(req_msg& req) {     if (req.get_term() == state_->get_term())     {         if (role_ == srv_role::candidate)         {             become_follower();         }         else if (role_ == srv_role::leader)         {             l_->debug(lstrfmt("Receive AppendEntriesRequest from another leader(%d) with same term, there must be a "                               "bug, server exits")                           .fmt(req.get_src()));             ctx_->state_mgr_->system_exit(-1);             ::exit(-1);         }         else         {             restart_election_timer();         }     }      // After a snapshot the req.get_last_log_idx() may less than log_store_->next_slot() but equals to     // log_store_->next_slot() -1 In this case, log is Okay if req.get_last_log_idx() == lastSnapshot.get_last_log_idx()     // && req.get_last_log_term() == lastSnapshot.get_last_log_term() In not accepted case, we will return     // log_store_->next_slot() for the leader to quick jump to the index that might aligned     ptr<resp_msg> resp(cs_new<resp_msg>(         state_->get_term(), msg_type::append_entries_response, id_, req.get_src(), log_store_->next_slot()));     bool log_okay = req.get_last_log_idx() == 0 || (req.get_last_log_idx() < log_store_->next_slot() &&                                                     req.get_last_log_term() == term_for_log(req.get_last_log_idx()));     if (req.get_term() < state_->get_term() || !log_okay)     {         return resp;     }      // follower & log is okay     if (req.log_entries().size() > 0)     {         // write logs to store, start from overlapped logs         ulong idx = req.get_last_log_idx() + 1;         size_t log_idx = 0;         while (idx < log_store_->next_slot() && log_idx < req.log_entries().size())         {             if (log_store_->term_at(idx) == req.log_entries().at(log_idx)->get_term())             {                 idx++;                 log_idx++;             }             else             {                 break;             }         }          // dealing with overwrites         while (idx < log_store_->next_slot() && log_idx < req.log_entries().size())         {             ptr<log_entry> old_entry(log_store_->entry_at(idx));             if (old_entry->get_val_type() == log_val_type::app_log)             {                 state_machine_->rollback(idx, old_entry->get_buf(), old_entry->get_cookie());             }             else if (old_entry->get_val_type() == log_val_type::conf)             {                 l_->info(sstrfmt("revert from a prev config change to config at %llu").fmt(config_->get_log_idx()));                 config_changing_ = false;             }              ptr<log_entry> entry = req.log_entries().at(log_idx);             log_store_->write_at(idx, entry);             if (entry->get_val_type() == log_val_type::app_log)             {                 state_machine_->pre_commit(idx, entry->get_buf(), entry->get_cookie());             }             else if (entry->get_val_type() == log_val_type::conf)             {                 l_->info(sstrfmt("receive a config change from leader at %llu").fmt(idx));                 config_changing_ = true;             }              idx += 1;             log_idx += 1;         }          // append new log entries         while (log_idx < req.log_entries().size())         {             ptr<log_entry> entry = req.log_entries().at(log_idx++);             ulong idx_for_entry = log_store_->append(entry);             if (entry->get_val_type() == log_val_type::conf)             {                 l_->info(sstrfmt("receive a config change from leader at %llu").fmt(idx_for_entry));                 config_changing_ = true;             }             else if (entry->get_val_type() == log_val_type::app_log)             {                 state_machine_->pre_commit(idx_for_entry, entry->get_buf(), entry->get_cookie());             }         }     }      leader_ = req.get_src();     commit(req.get_commit_idx());     resp->accept(req.get_last_log_idx() + req.log_entries().size() + 1);     return resp; } 
  • 1.根据不同角色判断(正常来说结束选举后的follower,在前面process_req就已经更新自己的term与leader一致了)
    (1)是candidate,说明election已经结束,已经出来了leader,退回到follower。
    (2)是leader,说明出bug了,终止程序。
    (3)是follower,说明已经收到了来自leader的消息,通过restart_election_timer来重新定时,避免election_timeout后触发election事件。
  • 2.最难理解的log_okay的判断,
bool log_okay = req.get_last_log_idx() == 0 || (req.get_last_log_idx() < log_store_->next_slot() &&                                                     req.get_last_log_term() == term_for_log(req.get_last_log_idx())); 

(1)这里的req的last_log_idx = leader对于follower猜测的next_idx - 1,如果last_log_idx = 0,说明需要从follower的log_store的头(idx = 0)开始更新log_store。
(2)req.get_last_log_idx() < log_store_->next_slot(),说明last_log_idx在follower的log_store范围内。如果last_log_idx超过follower的log_store范围,说明猜测不准,需要更正。这时候通过resp发送follower的log_store_->next_slot()可以快速帮助leader更正next_idx。(具体可见cornerstone中msg类型解析

  • 3.接着便是更新follower的log_store,其中相同的就跳过加快速度,需要overwrite就覆盖,需要在末尾append的就先分配空间再追加。

知识点:
对于follower与leader数据的同步,如果相同可以不用更新,直接跳过加快速度。

4.handle_vote_req源码解析

ptr<resp_msg> raft_server::handle_vote_req(req_msg& req) {     ptr<resp_msg> resp(cs_new<resp_msg>(state_->get_term(), msg_type::vote_response, id_, req.get_src()));     bool log_okay = req.get_last_log_term() > log_store_->last_entry()->get_term() ||                     (req.get_last_log_term() == log_store_->last_entry()->get_term() &&                      log_store_->next_slot() - 1 <= req.get_last_log_idx());     bool grant = req.get_term() == state_->get_term() && log_okay &&                  (state_->get_voted_for() == req.get_src() || state_->get_voted_for() == -1);     if (grant)     {         resp->accept(log_store_->next_slot());         state_->set_voted_for(req.get_src());         ctx_->state_mgr_->save_state(*state_);     }      return resp; } 
  • 1.重点是log_okay的判断
bool log_okay = req.get_last_log_term() > log_store_->last_entry()->get_term() ||                     (req.get_last_log_term() == log_store_->last_entry()->get_term() &&                      log_store_->next_slot() - 1 <= req.get_last_log_idx()); 

(1)req.get_last_log_term() > log_store_->last_entry()->get_term(),根据req最新的term与follower最新的term来比较,如果req的term更高,直接log_okay = true。
(2)如果term相同,判断req的idx是不是要比follower的更高,是的话log_okay = true。

  • 2.log_okay通过后,还要进一步判断,
  bool grant = req.get_term() == state_->get_term() && log_okay &&                  (state_->get_voted_for() == req.get_src() || state_->get_voted_for() == -1); 

(1)判断任期是否相同。
(2)判断是否未投票,因为raft规定一个follower只能投给一个candidate,否则会导致split-vote从而可能有多个leader。

知识点:
1.根据candidate的最后一个log_entry来给follower判断是否要投票。
2.一个follower只能投给一个candidate,否则造成split-vote导致多个leader。

5.handle_cli_req源码解析

ptr<resp_msg> raft_server::handle_cli_req(req_msg& req) {     bool leader = is_leader();      // check if leader has expired.     // there could be a case that the leader just elected, in that case, client can     // just simply retry, no safety issue here.     if (role_ == srv_role::leader && !leader)     {         return cs_new<resp_msg>(state_->get_term(), msg_type::append_entries_response, id_, -1);     }      ptr<resp_msg> resp(cs_new<resp_msg>(state_->get_term(), msg_type::append_entries_response, id_, leader_));     if (!leader)     {         return resp;     }      std::vector<ptr<log_entry>>& entries = req.log_entries();     for (size_t i = 0; i < entries.size(); ++i)     {         // force the log's term to current term         entries.at(i)->set_term(state_->get_term());          log_store_->append(entries.at(i));         state_machine_->pre_commit(log_store_->next_slot() - 1, entries.at(i)->get_buf(), entries.at(i)->get_cookie());     }      // urgent commit, so that the commit will not depend on hb     request_append_entries();     resp->accept(log_store_->next_slot());     return resp; } 
  • 1.首先判断是不是leader,不是则不处理,否则继续。
  • 2.是leader的话就把client要上传的entry先下载到自己的log_store里面,然后再通过request_append_entries广播给自己的follower。

知识点:
raft采用强leader机制,对于client的请求只能由leader处理,leader将req应用到自己状态机再广播给follower。

6.handle_add_srv_req源码解析

ptr<resp_msg> raft_server::handle_add_srv_req(req_msg& req) {     std::vector<ptr<log_entry>>& entries(req.log_entries());     ptr<resp_msg> resp(cs_new<resp_msg>(state_->get_term(), msg_type::add_server_response, id_, leader_));     if (entries.size() != 1 || entries[0]->get_val_type() != log_val_type::cluster_server)     {         l_->debug("bad add server request as we are expecting one log entry with value type of ClusterServer");         return resp;     }      if (role_ != srv_role::leader)     {         l_->info("this is not a leader, cannot handle AddServerRequest");         return resp;     }      ptr<srv_config> srv_conf(srv_config::deserialize(entries[0]->get_buf()));     {         read_lock(peers_lock_);         if (peers_.find(srv_conf->get_id()) != peers_.end() || id_ == srv_conf->get_id())         {             l_->warn(                 lstrfmt("the server to be added has a duplicated id with existing server %d").fmt(srv_conf->get_id()));             return resp;         }     }      if (config_changing_)     {         // the previous config has not committed yet         l_->info("previous config has not committed yet");         return resp;     }      conf_to_add_ = std::move(srv_conf);     timer_task<peer&>::executor exec = [this](peer& p) { this->handle_hb_timeout(p); };     srv_to_join_ = cs_new<peer>(conf_to_add_, *ctx_, exec);     invite_srv_to_join_cluster();     resp->accept(log_store_->next_slot());     return resp; }  void raft_server::invite_srv_to_join_cluster() {     ptr<req_msg> req(cs_new<req_msg>(         state_->get_term(),         msg_type::join_cluster_request,         id_,         srv_to_join_->get_id(),         0L,         log_store_->next_slot() - 1,         quick_commit_idx_));     req->log_entries().push_back(cs_new<log_entry>(state_->get_term(), config_->serialize(), log_val_type::conf));     srv_to_join_->send_req(req, ex_resp_handler_); }  ptr<resp_msg> raft_server::handle_join_cluster_req(req_msg& req) {     std::vector<ptr<log_entry>>& entries = req.log_entries();     ptr<resp_msg> resp(cs_new<resp_msg>(state_->get_term(), msg_type::join_cluster_response, id_, req.get_src()));     if (entries.size() != 1 || entries[0]->get_val_type() != log_val_type::conf)     {         l_->info("receive an invalid JoinClusterRequest as the log entry value doesn't meet the requirements");         return resp;     }      if (catching_up_)     {         l_->info("this server is already in log syncing mode");         return resp;     }      catching_up_ = true;     role_ = srv_role::follower;     leader_ = req.get_src();     sm_commit_index_ = 0;     quick_commit_idx_ = 0;     state_->set_voted_for(-1);     state_->set_term(req.get_term());     ctx_->state_mgr_->save_state(*state_);     reconfigure(cluster_config::deserialize(entries[0]->get_buf()));     resp->accept(log_store_->next_slot());     return resp; } 
  • 1.首先判断是不是只添加一个srv,if (entries.size() != 1 || entries[0]->get_val_type() != log_val_type::cluster_server)。raft为了保证election的时候只选出一个leader,强制要求每次cluster变更只能变更一个srv。具体可见Raft算法(三):如何解决成员变更的问题?
  • 2.接着判断role是不是leader,因为集群成员的变更是需要广播给各个节点的,只有leader能通过把集群的config写入自己的log_store然后调用append-entry广播给follower做到这点。
  • 3.if (config_changing_)判断是不是正在修改集群成员,保证一次只更改一个srv。
  • 4.调用invite_srv_to_join_cluster更新新节点的状态。
  • 5.在leader收到的resp里面,leader将新的cluster_config写入自己的log_store,调用append-entry将cluster集群成员变更同步给follower。(具体可见raft_server_resp_handlers源码解析)
    知识点:
    为了确保只有一个leader,集群成员变更一次只能变更一个节点,同时如果前一个集群变更还没完成不能开始下一个。

7.handle_rm_srv_req源码解析

ptr<resp_msg> raft_server::handle_rm_srv_req(req_msg& req) {     std::vector<ptr<log_entry>>& entries(req.log_entries());     ptr<resp_msg> resp(cs_new<resp_msg>(state_->get_term(), msg_type::remove_server_response, id_, leader_));     if (entries.size() != 1 || entries[0]->get_buf().size() != sz_int)     {         l_->info("bad remove server request as we are expecting one log entry with value type of int");         return resp;     }      if (role_ != srv_role::leader)     {         l_->info("this is not a leader, cannot handle RemoveServerRequest");         return resp;     }      if (config_changing_)     {         // the previous config has not committed yet         l_->info("previous config has not committed yet");         return resp;     }      int32 srv_id = entries[0]->get_buf().get_int();     if (srv_id == id_)     {         l_->info("cannot request to remove leader");         return resp;     }      ptr<peer> p;     {         read_lock(peers_lock_);         peer_itor pit = peers_.find(srv_id);         if (pit == peers_.end())         {             l_->info(sstrfmt("server %d does not exist").fmt(srv_id));             return resp;         }          p = pit->second;     }      ptr<req_msg> leave_req(cs_new<req_msg>(         state_->get_term(),         msg_type::leave_cluster_request,         id_,         srv_id,         0,         log_store_->next_slot() - 1,         quick_commit_idx_));     p->send_req(leave_req, ex_resp_handler_);     resp->accept(log_store_->next_slot());     return resp; } 

与handle_add_srv_req同理,不再赘述。

8.handle_log_sync_req源码解析

ptr<resp_msg> raft_server::handle_log_sync_req(req_msg& req) {     std::vector<ptr<log_entry>>& entries = req.log_entries();     ptr<resp_msg> resp(cs_new<resp_msg>(state_->get_term(), msg_type::sync_log_response, id_, req.get_src()));     if (entries.size() != 1 || entries[0]->get_val_type() != log_val_type::log_pack)     {         l_->info("receive an invalid LogSyncRequest as the log entry value doesn't meet the requirements");         return resp;     }      if (!catching_up_)     {         l_->info("This server is ready for cluster, ignore the request");         return resp;     }      log_store_->apply_pack(req.get_last_log_idx() + 1, entries[0]->get_buf());     commit(log_store_->next_slot() - 1);     resp->accept(log_store_->next_slot());     return resp; } 
  • 1.这里log_sync是特指新加入的srv的log_store同步,普通的follower与leader的同步是通过append-entry进行的。
  • 2.特判是不是只有一个srv的变更,然后再判断这个新加的srv是不是在catch-up,如果catch-up = 0,说明已经更新好了,无需更新。否则更新新加的srv。

9.handle_install_snapshot_req源码解析

ptr<resp_msg> raft_server::handle_install_snapshot_req(req_msg& req) {     if (req.get_term() == state_->get_term() && !catching_up_)     {         if (role_ == srv_role::candidate)         {             become_follower();         }         else if (role_ == srv_role::leader)         {             l_->err(lstrfmt("Receive InstallSnapshotRequest from another leader(%d) with same term, there must be a "                             "bug, server exits")                         .fmt(req.get_src()));             ctx_->state_mgr_->system_exit(-1);             ::exit(-1);             return ptr<resp_msg>();         }         else         {             restart_election_timer();         }     }      ptr<resp_msg> resp(cs_new<resp_msg>(state_->get_term(), msg_type::install_snapshot_response, id_, req.get_src()));     if (!catching_up_ && req.get_term() < state_->get_term())     {         l_->info("received an install snapshot request which has lower term than this server, decline the request");         return resp;     }      std::vector<ptr<log_entry>>& entries(req.log_entries());     if (entries.size() != 1 || entries[0]->get_val_type() != log_val_type::snp_sync_req)     {         l_->warn("Receive an invalid InstallSnapshotRequest due to bad log entries or bad log entry value");         return resp;     }      ptr<snapshot_sync_req> sync_req(snapshot_sync_req::deserialize(entries[0]->get_buf()));     if (sync_req->get_snapshot().get_last_log_idx() <= sm_commit_index_)     {         l_->warn(sstrfmt("received a snapshot (%llu) that is older than current log store")                      .fmt(sync_req->get_snapshot().get_last_log_idx()));         return resp;     }      if (handle_snapshot_sync_req(*sync_req))     {         resp->accept(sync_req->get_offset() + sync_req->get_data().size());     }      return resp; } 
  • 1.判断req的term与节点的term是否相同,相同则分情况(前面说过install_snapshot的rpc请求是会调用update_term,所以正常情况term是相同的)
    (1)节点是candidate,说明已经出现了leader,退回到follower。
    (2)节点是leader,出现了两个leader,出bug了。
    (3)节点是follower,说明收到了消息,重新定时。
  • 2.if (!catching_up_ && req.get_term() < state_->get_term())判断req是否合法,这里不单纯只判断req.get_term() < state_->get_term()是因为可能出现这个节点是新加的srv,term还没更新完,所以还要加一个!catching_up_的判断。
  • 3.snapshot应该只有一项,所以判断 if (entries.size() != 1 || entries[0]->get_val_type() != log_val_type::snp_sync_req)。
  • 4.判断snapshot的idx与节点的commit_idx大小关系,如果snapshot的小说明snapshot是旧的,不要。否则应用到自己状态机。

10.handle_prevote_req源码解析

ptr<resp_msg> raft_server::handle_prevote_req(req_msg& req) {     ptr<resp_msg> resp(cs_new<resp_msg>(state_->get_term(), msg_type::prevote_response, id_, req.get_src()));     bool log_okay = req.get_last_log_term() > log_store_->last_entry()->get_term() ||                     (req.get_last_log_term() == log_store_->last_entry()->get_term() &&                      log_store_->next_slot() - 1 <= req.get_last_log_idx());     bool grant = req.get_term() >= state_->get_term() && log_okay;     if (ctx_->params_->defensive_prevote_)     {         // In defensive mode, server will deny the prevote when it's operating well.         grant = grant && prevote_state_;     }      if (grant)     {         resp->accept(log_store_->next_slot());     }      return resp; } 

这里代码与handle_vote_req很相似,只是没有判断vote_for,意味着一个节点可能投多个票。

11. 总结

  • 1.采用事件驱动模型更新节点的term,高效快捷。
  • 2.对于follower与leader数据的同步,如果相同可以不用更新,直接跳过加快速度。
  • 3.一个follower只能投给一个candidate,否则造成split-vote导致多个leader。
  • 4.raft采用强leader机制,对于client的请求只能由leader处理,leader将req应用到自己状态机再广播给follower。
  • 5.为了确保只有一个leader,集群成员变更一次只能变更一个节点,同时如果前一个集群变更还没完成不能开始下一个。
发表评论

相关文章