[Flink/FlinkCDC] 实践总结:Flink 1.12.6 升级 Flink 1.15.4

Flink DataStream/API

未变的重要特性

虽然官宣建议弃用 JDK 8,使用JDK 11+;但:仍继续支持 JDK 8

个人猜测:JDK 8 的用户群实在太大,牵一发而动全身,防止步子扯太大,遏制自身项目的发展势头。

依赖模块的变化

版本变化

  • flink.version : 1.12.6 => 1.15.4
  • flink.connector.version : 1.12.6 => 1.15.4
  • flink.connector.cdc.version : 1.3.0 => 2.3.0
  • apache flink cdc 1.3.0
<dependency> 	<groupId>com.alibaba.ververica</groupId> 	<artifactId>flink-connector-mysql-cdc</artifactId> 	<version>1.3.0</version> </dependency> 
  • apache flink cdc 2.3.0
<dependency> 	<groupId>com.alibaba.ververica</groupId> 	<artifactId>flink-connector-mysql-cdc</artifactId> 	<version>2.3.0</version> </dependency> 
  • 详情参见:

各模块摆脱了 scala

详情参见:

https://github.com/apache/flink/blob/release-1.15.4/docs/content.zh/release-notes/flink-1.15.md 【推荐】
https://nightlies.apache.org/flink/flink-docs-release-1.15/release-notes/flink-1.15/

  • org.apache.flink:flink-clients:${flink.version}

  • flink-streaming-java:

  • org.apache.flink:flink-table-api-java-bridge

org.apache.flink:flink-table-api-java-bridge_${scala.version}:${flink.version}

  • org.apache.flink:flink-connector-kafka:${flink.version}

  • org.apache.flink:flink-runtime-web:${flink.version}

  • org.apache.flink:flink-statebackend-rocksdb:${flink.version}

  • org.apache.flink:flink-table-planner:${flink.version}

org.apache.flink:flink-table-planner-blink_${scala.version}:${flink.version}

停止支持 scala 2.11,但支持 2.12

scala.version = 2.12
flinkversion = 1.15.4

  • org.apache.flink:flink-connector-hive_${scala.version}:${flink.version}

  • org.apache.flink:flink-table-api-java-bridge:${flink.version}

相比 flink 1.12.6 时:org.apache.flink:flink-table-api-java-bridge_${scala.version=2.11}:${flink.version=1.12.6}

  • 从 Flink 1.15 开始,发行版包含两个规划器:
  • flink-table-planner_2.12-${flink.version}.jar : in /opt, 包含查询规划器
  • flink-table-planner-loader-${flink.version}.jar【推荐】 : 默认加载/lib,包含隐藏在隔离类路径后面的查询计划器

注意:这2个规划器(planner_2)不能同时存在于类路径中。如果将它们都加载到/lib表作业中,则会失败,报错Could not instantiate the executor. Make sure a planner module is on the classpath

Exception in thread "main" org.apache.flink.table.api.TableException: Could not instantiate the executor. Make sure a planner module is on the classpath     at org.apache.flink.table.api.bridge.internal.AbstractStreamTableEnvironmentImpl.lookupExecutor(AbstractStreamTableEnvironmentImpl.java:108)     at org.apache.flink.table.api.bridge.java.internal.StreamTableEnvironmentImpl.create(StreamTableEnvironmentImpl.java:100)     at org.apache.flink.table.api.bridge.java.StreamTableEnvironment.create(StreamTableEnvironment.java:122)     at org.apache.flink.table.api.bridge.java.StreamTableEnvironment.create(StreamTableEnvironment.java:94)     at table.FlinkTableTest.main(FlinkTableTest.java:15) Caused by: org.apache.flink.table.api.ValidationException: Multiple factories for identifier 'default' that implement 'org.apache.flink.table.delegation.ExecutorFactory' found in the classpath.  Ambiguous factory classes are:  org.apache.flink.table.planner.delegation.DefaultExecutorFactory org.apache.flink.table.planner.loader.DelegateExecutorFactory     at org.apache.flink.table.factories.FactoryUtil.discoverFactory(FactoryUtil.java:553)     at org.apache.flink.table.api.bridge.internal.AbstractStreamTableEnvironmentImpl.lookupExecutor(AbstractStreamTableEnvironmentImpl.java:105)     ... 4 more  Process finished with exit code 1 
  • flink 1.14 版本以后,之前版本 flink-table-*-blink-* 转正。所以:
  • flink-table-planner-blink => flink-table-planner
  • flink-table-runtime-blink => flink-table-runtime
  • 若报下列错误,即:版本不同引起的包冲突。

NoClassDefFoundError: org/apache/flink/shaded/guava30/com/google/common/collect/Lists

原因: flink 1.16、1.15 、1.12.6 等版本使用的 flink-shaded-guava 版本基本不一样,且版本不兼容,需要修改 cdc 中的 flink-shaded-guava 版本。

  • 不同flink版本对应flink-shaded-guava模块的版本
  • flink 1.12.6 : flink-shaded-guava 18.0-12.0
  • flink 1.15.4 : flink-shaded-guava 30.1.1-jre-15.0
  • flink 1.16.0 : flink-shaded-guava 30.1.1-jre-16.0

[Flink/FlinkCDC] 实践总结:Flink 1.12.6 升级 Flink 1.15.4

  • 如果工程内没有主动引入org.apache.flink:flink-shaded-guava工程,则无需关心此问题————flink-core/flink-runtime/flink-clients等模块内部会默认引入正确的版本

[Flink/FlinkCDC] 实践总结:Flink 1.12.6 升级 Flink 1.15.4

flink 1.15.4

[Flink/FlinkCDC] 实践总结:Flink 1.12.6 升级 Flink 1.15.4

flink 1.12.6

MySQL JDBC Version : ≥ 8.0.16 => ≥8.0.27

  • 版本依据: Apache Flink CDC 官网

详情参见: Flink CDC 官网: Flink CDC MYSQL 包 && Flink && JDK && MYSQL 的版本对照 - 博客园/千千寰宇

针对报错:Caused by: java.lang.NoSuchMethodError: com.mysql.cj.CharsetMapping.getJavaEncodingForMysqlCharset(Ljava/lang/String;)Ljava/lang/String;

如果MySQL是8.0,fink cdc 2.1 之后由debezium连接器引起的问题。

  • 建议统一使用:mysql jdbc 8.0.28
<dependency> 	<groupId>mysql</groupId> 	<artifactId>mysql-connector-java</artifactId> 	<version>8.0.28</version> </dependency> 

应用程序的源代码调整

KafkaRecordDeserializer : 不再存在/不再被支持(flink1.13.0及之后),并替换为 KafkaDeserializationSchemaKafkaSourceBuilder创建本对象的语法稍有变化

  • org.apache.flink.connector.kafka.source.reader.deserializer.KafkaRecordDeserializer | flink-connector-kafka_2.11 : 1.12.6

https://github.com/apache/flink/blob/release-1.12.7/flink-connectors/flink-connector-kafka/src/main/java/org/apache/flink/connector/kafka/source/reader/deserializer/KafkaRecordDeserializer.java

  • flink 1.13.0 : 不再存在/不再支持 KafkaRecordDeserializer

https://github.com/apache/flink/tree/release-1.13.0/flink-connectors/flink-connector-kafka/src/main/java/org/apache/flink/connector/kafka/source/reader/deserializer

  • flink 14.0

https://github.com/apache/flink/tree/release-1.14.0/flink-connectors/flink-connector-kafka/src/main/java/org/apache/flink/connector/kafka/source/reader/deserializer

  • flink 1.15.4

https://github.com/apache/flink/tree/release-1.15.4/flink-connectors/flink-connector-kafka/src/main/java/org/apache/flink/connector/kafka/source/reader/deserializer/KafkaRecordDeserializationSchema.java

  • flink-connector-kafka : 3.0.0 | 了解即可,暂无需被此工程干扰上面思路

https://github.com/apache/flink-connector-kafka/blob/v3.0.0/flink-connector-kafka/src/main/java/org/apache/flink/connector/kafka/source/reader/deserializer/KafkaRecordDeserializationSchema.java

  • 改造原因、改造思路

在 Apache Flink 1.13.0起,KafkaRecordDeserializer已被弃用、并被移除。
如果你正在使用的是Flink的旧版本,并且你看到了KafkaRecordDeserializer的提示,你应该将其替换为使用KafkaDeserializationSchema【推荐】或KafkaDeserializer
KafkaDeserializationSchema相比KafkaRecordDeserializer,多了需要强制实现的2个方法:

  • boolean isEndOfStream(T var1) : 默认返回 false 即可
  • T deserialize(ConsumerRecord<byte[], byte[]> var1) : 老方法void deserialize(ConsumerRecord<byte[], byte[]> message, Collector<T> out)内部调用的即本方法
// flink 1.15.4 //org.apache.flink.streaming.connectors.kafka.KafkaDeserializationSchema  package org.apache.flink.streaming.connectors.kafka;  import java.io.Serializable; import org.apache.flink.annotation.PublicEvolving; import org.apache.flink.api.common.serialization.DeserializationSchema; import org.apache.flink.api.java.typeutils.ResultTypeQueryable; import org.apache.flink.util.Collector; import org.apache.kafka.clients.consumer.ConsumerRecord;  @PublicEvolving public interface KafkaDeserializationSchema<T> extends Serializable, ResultTypeQueryable<T> {     default void open(DeserializationSchema.InitializationContext context) throws Exception {     }      boolean isEndOfStream(T var1);      T deserialize(ConsumerRecord<byte[], byte[]> var1) throws Exception;//方法1      default void deserialize(ConsumerRecord<byte[], byte[]> message, Collector<T> out) throws Exception {//方法2         T deserialized = this.deserialize(message);// 复用/调用的方法1         if (deserialized != null) {             out.collect(deserialized);         }     } } 

故新适配新增的T deserialize(ConsumerRecord<byte[], byte[]> var1)方法是很容易的:

import com.xxx.StringUtils; import org.apache.flink.api.common.serialization.DeserializationSchema; import org.apache.flink.api.common.typeinfo.BasicTypeInfo; import org.apache.flink.api.common.typeinfo.TypeInformation; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.api.java.typeutils.TupleTypeInfo; //import org.apache.flink.connector.kafka.source.reader.deserializer.KafkaRecordDeserializer; import org.apache.flink.streaming.connectors.kafka.KafkaDeserializationSchema; import org.apache.flink.util.Collector; import org.apache.kafka.clients.consumer.ConsumerRecord;  //public class MyKafkaRecordDeserializer implements KafkaRecordDeserializer<Tuple2<String, String>> { public class MyKafkaRecordDeserializer implements KafkaDeserializationSchema<Tuple2<String, String>> { /*    @Override     public void open(DeserializationSchema.InitializationContext context) throws Exception {         KafkaDeserializationSchema.super.open(context);     }*/      @Override     public boolean isEndOfStream(Tuple2<String, String> stringStringTuple2) {         return false;     }      @Override     public Tuple2<String, String> deserialize(ConsumerRecord<byte[], byte[]> consumerRecord) throws Exception {//适配新方法1 | 强制         if(consumerRecord.key() == null){             return new Tuple2<>("null", StringUtils.bytesToHexString(consumerRecord.value()) );         }         return new Tuple2<>( new String(consumerRecord.key() ) , StringUtils.bytesToHexString(consumerRecord.value() ) );     }  //    @Override //    public void deserialize(ConsumerRecord<byte[], byte[]> consumerRecord, Collector<Tuple2<String, String>> collector) throws Exception {//适配老方法2 | 非强制 //        collector.collect(new Tuple2<>(consumerRecord.key() == null ? "null" : new String(consumerRecord.key()), StringUtils.bytesToHexString(consumerRecord.value()))); //    }      @Override     public TypeInformation<Tuple2<String, String>> getProducedType() {         return new TupleTypeInfo<>(BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.STRING_TYPE_INFO);     } } 

使用本类、创建本类对象的方式,也稍有变化:

// org.apache.flink.connector.kafka.source.KafkaSourceBuilder | flink-connector-kafka:1.15.4 KafkaSourceBuilder<Tuple2<String, String>> kafkaConsumerSourceBuilder = KafkaSource.<Tuple2<String, String>>builder() 	.setTopics(canTopic) 	.setProperties(kafkaConsumerProperties) 	.setClientIdPrefix(Constants.JOB_NAME + "#" + System.currentTimeMillis() + "") 	.setDeserializer( KafkaRecordDeserializationSchema.of(new MyKafkaRecordDeserializer()) ); // flink 1.15.4 	//.setDeserializer(new MyKafkaRecordDeserializer());// flink 1.12.6 
  • 推荐文献
  • com.alibaba.ververica.cdc.connectors.mysql.MySQLSource | flink cdc 1.3.0

https://github.com/apache/flink-cdc/blob/release-1.3.0/flink-connector-mysql-cdc/src/main/java/com/alibaba/ververica/cdc/connectors/mysql/MySQLSource.java
包路径被调整、类名大小写有变化

https://github.com/apache/flink-cdc/blob/release-2.0.0/flink-connector-mysql-cdc/src/main/java/com/ververica/cdc/connectors/mysql/MySqlSource.java
com.ververica.cdc.connectors.mysql.MySqlSource 自 flink cdc 2.1.0 及之后被建议弃用、但com.ververica.cdc.connectors.mysql.source.MySqlSource被推荐可用
https://github.com/apache/flink-cdc/blob/release-2.1.0/flink-connector-mysql-cdc/src/main/java/com/ververica/cdc/connectors/mysql/MySqlSource.java
Flink CDC这个MySqlSource弃用了,还有别的方式吗? - aliyun 【推荐】

有两个MysqlSource,一个是弃用的,另一个是可用的,包名不同。com.ververica.cdc.connectors.mysql.source这个包下的是可用的。

  • com.ververica.cdc.connectors.mysql.source.MySqlSource | flink cdc 2.3.0

https://github.com/apache/flink-cdc/blob/release-2.3.0/flink-connector-mysql-cdc/src/main/java/com/ververica/cdc/connectors/mysql/MySqlSource.java

[Flink/FlinkCDC] 实践总结:Flink 1.12.6 升级 Flink 1.15.4

serverId : 如果选择新的MySqlSource类,则:其设置入参稍有变化
  • com.alibaba.ververica.cdc.connectors.mysql.MySQLSource#serverId() | flink cdc 1.3.0

https://github.com/apache/flink-cdc/blob/release-1.3.0/flink-connector-mysql-cdc/src/main/java/com/alibaba/ververica/cdc/connectors/mysql/MySQLSource.java

  • com.ververica.cdc.connectors.mysql.source.MySqlSource | flink cdc 2.1.0 、 2.3.0 【被推荐使用】

https://github.com/apache/flink-cdc/blob/release-2.1.0/flink-connector-mysql-cdc/src/main/java/com/ververica/cdc/connectors/mysql/source/MySqlSource.java

没有serverId方法
https://github.com/apache/flink-cdc/blob/release-2.1.0/flink-connector-mysql-cdc/src/main/java/com/ververica/cdc/connectors/mysql/source/MySqlSourceBuilder.java
serverId方法,通过MySqlSource.<String>builder()MySqlSourceBuilder

/**  * A numeric ID or a numeric ID range of this database client, The numeric ID syntax is like  * '5400', the numeric ID range syntax is like '5400-5408', The numeric ID range syntax is  * required when 'scan.incremental.snapshot.enabled' enabled. Every ID must be unique across all  * currently-running database processes in the MySQL cluster. This connector joins the MySQL  * cluster as another server (with this unique ID) so it can read the binlog. By default, a  * random number is generated between 5400 and 6400, though we recommend setting an explicit  * value."  */ public MySqlSourceBuilder<T> serverId(String serverId) { 	this.configFactory.serverId(serverId); 	return this; } 
  • com.ververica.cdc.connectors.mysql.source.MySqlSource#serverId(int serverId) | flink cdc 2.1.0 【被建议弃用】、flink cdc 2.3.0 【被废止/无法用】

https://github.com/apache/flink-cdc/blob/release-2.1.0/flink-connector-mysql-cdc/src/main/java/com/ververica/cdc/connectors/mysql/MySqlSource.java

/**  * A numeric ID of this database client, which must be unique across all currently-running  * database processes in the MySQL cluster. This connector joins the MySQL database cluster  * as another server (with this unique ID) so it can read the binlog. By default, a random  * number is generated between 5400 and 6400, though we recommend setting an explicit value.  */ public Builder<T> serverId(int serverId) { 	this.serverId = serverId; 	return this; } 
  • 改造Demo: flink 1.3.0
SourceFunction<String> mySqlSource =  	MySqlSource.<String>builder() 	//数据库地址 	.hostname(jobParameterTool.get("cdc.mysql.hostname")) 	//端口号 	.port(Integer.parseInt(jobParameterTool.get("cdc.mysql.port"))) 	//用户名 	.username(jobParameterTool.get("cdc.mysql.username")) 	//密码 	.password(jobParameterTool.get("cdc.mysql.password")) 	//监控的数据库 	.databaseList(jobParameterTool.get("cdc.mysql.databaseList")) 	//监控的表名,格式数据库.表名 	.tableList(jobParameterTool.get("cdc.mysql.tableList")) 	//虚拟化方式 	.deserializer(new MySQLCdcMessageDeserializationSchema()) 	//时区 	.serverTimeZone("UTC") 	.serverId( randomServerId(5000, Constants.JOB_NAME + "#xxxConfig") ) 	.startupOptions(StartupOptions.latest()) 	.build();   public static Integer randomServerId(int interval, String jobCdcConfigDescription){ 	//startServerId ∈[ interval + 0, interval + interval) 	//int serverId = RANDOM.nextInt(interval) + interval; // RANDOM.nextInt(n) : 生成介于 [0,n) 区间的随机整数 	//serverId = [ 7000 + 0, Integer.MAX_VALUE - interval) 	int serverId = RANDOM.nextInt(Integer.MAX_VALUE - interval - 7000) + 7000; 	log.info("Success to generate random server id result! serverId : {}, interval : {}, jobCdcConfigDescription : {}" 			, serverId , interval , jobCdcConfigDescription ); 	return serverId; } 
  • 改造Demo: flink 2.3.0
MySqlSource<String> mySqlSource =  	MySqlSource.<String>builder() 	//数据库地址 	.hostname(jobParameterTool.get("cdc.mysql.hostname")) 	//端口号 	.port(Integer.parseInt(jobParameterTool.get("cdc.mysql.port"))) 	//用户名 	.username(jobParameterTool.get("cdc.mysql.username")) 	//密码 	.password(jobParameterTool.get("cdc.mysql.password")) 	//监控的数据库 	.databaseList(jobParameterTool.get("cdc.mysql.databaseList")) 	//监控的表名,格式数据库.表名 	.tableList(jobParameterTool.get("cdc.mysql.tableList")) 	//虚拟化方式 	.deserializer(new MySQLCdcMessageDeserializationSchema()) 	//时区 	.serverTimeZone("UTC") 	.serverId( randomServerIdRange(5000, Constants.JOB_NAME + "#xxxConfig") ) 	.startupOptions(StartupOptions.latest()) 	.build();   //新增强制要求: interval >= 本算子的并行度 public static String randomServerIdRange(int interval, String jobCdcConfigDescription){ 	// 生成1个起始随机数 | 	//startServerId = [interval + 0, interval + interval ) 	//int startServerId = RANDOM.nextInt(interval) + interval; // RANDOM.nextInt(n) : 生成介于 [0,n) 区间的随机整数 	//startServerId = [ 7000 + 0, Integer.MAX_VALUE - interval) 	int startServerId = RANDOM.nextInt(Integer.MAX_VALUE - interval - 7000) + 7000;  	//endServerId ∈ [startServerId, startServerId + interval]; 	int endServerId = startServerId + interval; 	log.info("Success to generate random server id result! startServerId : {},endServerId : {}, interval : {}, jobCdcConfigDescription : {}" 			, startServerId, endServerId , interval , jobCdcConfigDescription ); 	return String.format("%d-%d", startServerId, endServerId); } 
MySQLSourceBuilder#build 方法: 返回类型存在变化: SourceFunction/DebeziumSourceFunction<T> => MySqlSource<T>
  • org.apache.flink.streaming.api.functions.source.SourceFunction => com.ververica.cdc.connectors.mysql.source.MySqlSource
//com.alibaba.ververica.cdc.connectors.mysql.MySQLSource.Builder#build | flink cdc 1.3.0 // 返回: com.alibaba.ververica.cdc.debezium.DebeziumSourceFunction // public class DebeziumSourceFunction<T> extends RichSourceFunction<T> implements CheckpointedFunction, CheckpointListener, ResultTypeQueryable<T> //public abstract class org.apache.flink.streaming.api.functions.source.RichSourceFunction<OUT> extends AbstractRichFunction implements SourceFunction<OUT> public DebeziumSourceFunction<T> build() { 	Properties props = new Properties(); 	props.setProperty("connector.class", MySqlConnector.class.getCanonicalName()); 	props.setProperty("database.server.name", "mysql_binlog_source"); 	props.setProperty("database.hostname", (String)Preconditions.checkNotNull(this.hostname)); 	props.setProperty("database.user", (String)Preconditions.checkNotNull(this.username)); 	props.setProperty("database.password", (String)Preconditions.checkNotNull(this.password)); 	props.setProperty("database.port", String.valueOf(this.port)); 	props.setProperty("database.history.skip.unparseable.ddl", String.valueOf(true)); 	if (this.serverId != null) { 		props.setProperty("database.server.id", String.valueOf(this.serverId)); 	} 	... }   //com.ververica.cdc.connectors.mysql.source.MySqlSourceBuilder#build | flink cdc 2.3.0 //// 返回:  public MySqlSource<T> build() { 	return new MySqlSource(this.configFactory, (DebeziumDeserializationSchema)Preconditions.checkNotNull(this.deserializer)); } 
  • 使用变化Demo: Flink cdc 1.3.0

mysqlSource 想要监听 mysql 表结构变更(例如:添加新的字段),要怎么办?设置 - aliyun

Properties properties = new Properties(); properties.setProperty("database.hostname", "localhost"); properties.setProperty("database.port", "3306"); properties.setProperty("database.user", "your_username"); properties.setProperty("database.password", "your_password"); properties.setProperty("database.server.id", "1"); // 设置唯一的 server id properties.setProperty("database.server.name", "mysql_source");  DebeziumSourceFunction<String> sourceFunction = MySQLSource.<String>builder()     .hostname("localhost")     .port(3306)     .username("your_username")     .password("your_password")     .databaseList("your_database")     .tableList("your_table")     .includeSchemaChanges(true) // 开启监听表结构变更     .deserializer(new StringDebeziumDeserializationSchema())     .build();  DataStreamSource<String> stream = env.addSource(sourceFunction);//可以使用 addSource  stream.print(); env.execute("MySQL CDC Job"); 
  • 使用变化Demo: Flink cdc 2.3.0

https://flink-tpc-ds.github.io/flink-cdc-connectors/release-2.3/content/connectors/mysql-cdc(ZH).html
无法使用 env.addSource(SourceFunction, String sourceName),只能使用env.fromSource(Source<OUT, ?, ?> source, WatermarkStrategy<OUT> timestampsAndWatermarks, String sourceName)

import org.apache.flink.api.common.eventtime.WatermarkStrategy; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema; import com.ververica.cdc.connectors.mysql.source.MySqlSource;  public class MySqlSourceExample {   public static void main(String[] args) throws Exception {     MySqlSource<String> mySqlSource = MySqlSource.<String>builder()         .hostname("yourHostname")         .port(yourPort)         .databaseList("yourDatabaseName") // 设置捕获的数据库, 如果需要同步整个数据库,请将 tableList 设置为 ".*".         .tableList("yourDatabaseName.yourTableName") // 设置捕获的表         .username("yourUsername")         .password("yourPassword")         .deserializer(new JsonDebeziumDeserializationSchema()) // 将 SourceRecord 转换为 JSON 字符串         .build();      StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();      // 设置 3s 的 checkpoint 间隔     env.enableCheckpointing(3000);      env       .fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "MySQL Source")       // 设置 source 节点的并行度为 4       .setParallelism(4)       .print().setParallelism(1); // 设置 sink 节点并行度为 1       env.execute("Print MySQL Snapshot + Binlog");   } } 

StartupOptions : 包路径被调整(2.0.0及之后)

  • import com.alibaba.ververica.cdc.connectors.mysql.table.StartupOptions | flink 1.3.0

https://github.com/apache/flink-cdc/blob/release-1.3.0/flink-connector-mysql-cdc/src/main/java/com/alibaba/ververica/cdc/connectors/mysql/table/StartupOptions.java

  • com.ververica.cdc.connectors.mysql.table.StartupOptions | flink 2.3.0

https://github.com/apache/flink-cdc/blob/release-2.3.0/flink-connector-mysql-cdc/src/main/java/com/ververica/cdc/connectors/mysql/table/StartupOptions.java

  • com.alibaba.ververica.cdc.debezium.DebeziumDeserializationSchema | flink cdc 1.3.0

com.ververica:flink-connector-debezium:1.3.0
https://github.com/apache/flink-cdc/blob/release-1.3.0/flink-connector-debezium/src/main/java/com/alibaba/ververica/cdc/debezium/DebeziumDeserializationSchema.java

  • com.ververica.cdc.debezium.DebeziumDeserializationSchema | flink cdc 2.3.0

com.ververica:flink-connector-debezium:2.3.0
https://github.com/apache/flink-cdc/blob/release-2.3.0/flink-connector-debezium/src/main/java/com/ververica/cdc/debezium/DebeziumDeserializationSchema.java

X 参考文献

  • com.alibaba.ververica:flink-connector-mysql-cdc:1.3.0

https://github.com/apache/flink-cdc/blob/release-1.3.0/flink-connector-mysql-cdc/pom.xml 【推荐】 Flink 1.12.6

  • com.ververica:flink-connector-mysql-cdc:2.0

MYSQL (Database: 5.7, 8.0.x / JDBC Driver: 8.0.16 ) | Flink 1.12 + | JDK 8+
https://github.com/apache/flink-cdc/tree/release-2.0
https://github.com/apache/flink-cdc/blob/release-2.0/flink-connector-mysql-cdc/pom.xml

  • com.ververica:flink-connector-mysql-cdc:2.3.0

https://github.com/apache/flink-cdc/blob/release-2.3.0/flink-connector-mysql-cdc/pom.xml 【推荐】 Flink 1.15.4

  • org.apache.flink:flink-connector-mysql-cdc:${flink.cdc.version}
  • apache flink
  • apache flink-connector-kafka
发表评论

相关文章

当前内容话题