Spark: 单词计数(Word Count)的MapReduce实现(Java/Python)

1 导引

我们在博客《Hadoop: 单词计数(Word Count)的MapReduce实现 》中学习了如何用Hadoop-MapReduce实现单词计数,现在我们来看如何用Spark来实现同样的功能。

2. Spark的MapReudce原理

Spark框架也是MapReduce-like模型,采用“分治-聚合”策略来对数据分布进行分布并行处理。不过该框架相比Hadoop-MapReduce,具有以下两个特点:

  • 对大数据处理框架的输入/输出,中间数据进行建模,将这些数据抽象为统一的数据结构命名为弹性分布式数据集(Resilient Distributed Dataset),并在此数据结构上构建了一系列通用的数据操作,使得用户可以简单地实现复杂的数据处理流程。

  • 采用了基于内存的数据聚合、数据缓存等机制来加速应用执行尤其适用于迭代和交互式应用。

Spark社区推荐用户使用Dataset、DataFrame等面向结构化数据的高层API(Structured API)来替代底层的RDD API,因为这些高层API含有更多的数据类型信息(Schema),支持SQL操作,并且可以利用经过高度优化的Spark SQL引擎来执行。不过,由于RDD API更基础,更适合用来展示基本概念和原理,后面我们的代码都使用RDD API。

Spark的RDD/dataset分为多个分区。RDD/Dataset的每一个分区都映射一个或多个数据文件, Spark通过该映射读取数据输入到RDD/dataset中。

Spark的分区数和以下参数都有关系:

  • spark.default.parallelism (默认为CPU的核数)

  • spark.sql.files.maxPartitionBytes (默认为128 MB)读取文件时打包到单个分区中的最大字节数)

  • spark.sql.files.openCostInBytes (默认为4 MB) 该参数默认4M,表示小于4M的小文件会合并到一个分区中,用于减小小文件,防止太多单个小文件占一个分区情况。这个参数就是合并小文件的阈值,小于这个阈值的文件将会合并。

我们下面的流程描述中,假设每个文件对应一个分区(实际上因为文件很小,导致三个文件都在同一个分区中,大家可以通过调用RDD对象的getNumPartitions()查看)。

Spark的Map示意图如下:
Spark: 单词计数(Word Count)的MapReduce实现(Java/Python)

Spark的Reduce示意图如下:

Spark: 单词计数(Word Count)的MapReduce实现(Java/Python)

3. Word Count的Java实现

项目架构如下图:

Word-Count-Spark ├─ input │  ├─ file1.txt │  ├─ file2.txt │  └─ file3.txt ├─ output │  └─ result.txt ├─ pom.xml ├─ src │  ├─ main │  │  └─ java │  │     └─ WordCount.java │  └─ test └─ target 

WordCount.java文件如下:

import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.sql.SparkSession;  import scala.Tuple2; import java.util.Arrays; import java.util.List; import java.util.regex.Pattern; import java.io.*; import java.nio.file.*;  public class WordCount { 	private static Pattern SPACE = Pattern.compile(" ");  	public static void main(String[] args) throws Exception { 		if (args.length != 2) { 			System.err.println("Usage: WordCount <intput directory> <output directory>"); 			System.exit(1); 		}         String input_path = args[0];         String output_path = args[1];  		SparkSession spark = SparkSession.builder() 			.appName("WordCount") 			.master("local") 			.getOrCreate();  		JavaRDD<String> lines = spark.read().textFile(input_path).javaRDD();  		JavaRDD<String> words = lines.flatMap(s -> Arrays.asList(SPACE.split(s)).iterator()); 		JavaPairRDD<String, Integer> ones = words.mapToPair(s -> new Tuple2<>(s, 1)); 		JavaPairRDD<String, Integer> counts = ones.reduceByKey((i1, i2) -> i1 + i2);  		List<Tuple2<String, Integer>> output = counts.collect();          String filePath = Paths.get(output_path, "result.txt").toString();         BufferedWriter out = new BufferedWriter(new FileWriter(filePath)); 		for (Tuple2<?, ?> tuple : output) { 			out.write(tuple._1() + ": " + tuple._2() + "n"); 		} 		out.close();         spark.stop(); 	} } 

pom.xml文件配置如下:

<?xml version="1.0" encoding="UTF-8"?>  <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"   xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">   <modelVersion>4.0.0</modelVersion>    <groupId>com.WordCount</groupId>   <artifactId>WordCount</artifactId>   <version>1.0-SNAPSHOT</version>    <name>WordCount</name>   <!-- FIXME change it to the project's website -->   <url>http://www.example.com</url>    <!-- 集中定义版本号 -->   <properties>     <scala.version>2.12.10</scala.version>     <scala.compat.version>2.12</scala.compat.version>     <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>     <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>     <project.timezone>UTC</project.timezone>     <java.version>11</java.version>     <scoverage.plugin.version>1.4.0</scoverage.plugin.version>     <site.plugin.version>3.7.1</site.plugin.version>     <scalatest.version>3.1.2</scalatest.version>     <scalatest-maven-plugin>2.0.0</scalatest-maven-plugin>     <scala.maven.plugin.version>4.4.0</scala.maven.plugin.version>     <maven.compiler.plugin.version>3.8.0</maven.compiler.plugin.version>     <maven.javadoc.plugin.version>3.2.0</maven.javadoc.plugin.version>     <maven.source.plugin.version>3.2.1</maven.source.plugin.version>     <maven.deploy.plugin.version>2.8.2</maven.deploy.plugin.version>     <nexus.staging.maven.plugin.version>1.6.8</nexus.staging.maven.plugin.version>     <maven.help.plugin.version>3.2.0</maven.help.plugin.version>     <maven.gpg.plugin.version>1.6</maven.gpg.plugin.version>     <maven.surefire.plugin.version>2.22.2</maven.surefire.plugin.version>     <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>     <maven.compiler.source>11</maven.compiler.source>     <maven.compiler.target>11</maven.compiler.target>     <spark.version>3.2.1</spark.version>   </properties>    <dependencies>     <dependency>       <groupId>junit</groupId>       <artifactId>junit</artifactId>       <version>4.11</version>       <scope>test</scope>     </dependency>     <!--======SCALA======-->     <dependency>         <groupId>org.scala-lang</groupId>         <artifactId>scala-library</artifactId>         <version>${scala.version}</version>         <scope>provided</scope>     </dependency>     <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->     <dependency>         <groupId>org.apache.spark</groupId>         <artifactId>spark-core_2.12</artifactId>         <version>${spark.version}</version>     </dependency>     <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->     <dependency> <!-- Spark dependency -->         <groupId>org.apache.spark</groupId>         <artifactId>spark-sql_2.12</artifactId>         <version>${spark.version}</version>         <scope>provided</scope>     </dependency>   </dependencies>     <build>     <pluginManagement><!-- lock down plugins versions to avoid using Maven defaults (may be moved to parent pom) -->       <plugins>         <!-- clean lifecycle, see https://maven.apache.org/ref/current/maven-core/lifecycles.html#clean_Lifecycle -->         <plugin>           <artifactId>maven-clean-plugin</artifactId>           <version>3.1.0</version>         </plugin>         <!-- default lifecycle, jar packaging: see https://maven.apache.org/ref/current/maven-core/default-bindings.html#Plugin_bindings_for_jar_packaging -->         <plugin>           <artifactId>maven-resources-plugin</artifactId>           <version>3.0.2</version>         </plugin>         <plugin>           <artifactId>maven-compiler-plugin</artifactId>           <version>3.8.0</version>         </plugin>         <plugin>           <artifactId>maven-surefire-plugin</artifactId>           <version>2.22.1</version>         </plugin>         <plugin>           <artifactId>maven-jar-plugin</artifactId>           <version>3.0.2</version>         </plugin>         <plugin>           <artifactId>maven-install-plugin</artifactId>           <version>2.5.2</version>         </plugin>         <plugin>           <artifactId>maven-deploy-plugin</artifactId>           <version>2.8.2</version>         </plugin>         <!-- site lifecycle, see https://maven.apache.org/ref/current/maven-core/lifecycles.html#site_Lifecycle -->         <plugin>           <artifactId>maven-site-plugin</artifactId>           <version>3.7.1</version>         </plugin>         <plugin>           <artifactId>maven-project-info-reports-plugin</artifactId>           <version>3.0.0</version>         </plugin>         <plugin>           <artifactId>maven-compiler-plugin</artifactId>           <version>3.8.0</version>           <configuration>               <source>11</source>               <target>11</target>               <fork>true</fork>               <executable>/Library/Java/JavaVirtualMachines/jdk-11.0.15.jdk/Contents/Home/bin/javac</executable>           </configuration>         </plugin>       </plugins>     </pluginManagement>   </build> </project>  

记得配置输入参数inputoutput代表输入目录和输出目录(在VSCode中在launch.json文件中配置)。编译运行后可在output目录下查看result.txt

Tom: 1 Hello: 3 Goodbye: 1 World: 2 David: 1 

可见成功完成了单词计数功能。

4. Word Count的Python实现

先使用pip按照pyspark==3.8.2

pip install pyspark==3.8.2 

注意PySpark只支持Java 8/11,请勿使用更高级的版本。这里我使用的是Java 11。运行java -version可查看本机Java版本。

(base) orion-orion@MacBook-Pro ~ % java -version java version "11.0.15" 2022-04-19 LTS Java(TM) SE Runtime Environment 18.9 (build 11.0.15+8-LTS-149) Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.15+8-LTS-149, mixed mode) 

项目架构如下:

Word-Count-Spark ├─ input │  ├─ file1.txt │  ├─ file2.txt │  └─ file3.txt ├─ output │  └─ result.txt ├─ src │  └─ word_count.py 

word_count.py编写如下:

from pyspark.sql import SparkSession import sys import os from operator import add  if len(sys.argv) != 3:     print("Usage: WordCount <intput directory> <output directory>", file=sys.stderr)     exit(1)       input_path, output_path = sys.argv[1], sys.argv[2]  spark = SparkSession.builder.appName("WordCount").master("local").getOrCreate()  lines = spark.read.text(input_path).rdd.map(lambda r: r[0])  counts = lines.flatMap(lambda s: s.split(" "))     .map(lambda word: (word, 1))     .reduceByKey(add)  output = counts.collect()  with open(os.path.join(output_path, "result.txt"), "wt") as f:     for (word, count) in output:         f.write(str(word) +": " + str(count) + "n")  spark.stop()  

使用python word_count.py input output运行后,可在output中查看对应的输出文件result.txt

Hello: 3 World: 2 Goodbye: 1 David: 1 Tom: 1 

可见成功完成了单词计数功能。

参考

发表评论

相关文章