CSAPP 之 CacheLab 详解


前言

本篇博客将会介绍 CSAPP 之 CacheLab 的解题过程,分为 Part A 和 Part B 两个部分,其中 Part A 要求使用代码模拟一个高速缓存存储器,Part B 要求优化矩阵的转置运算。

解题过程

Part A

题目要求

Part A 给出了一些后缀名为 trace 的文件,文件中的内容如下图所示,其中每一行代表一次对缓存的操作,格式为 [空格] 操作 地址,数据大小,其中操作的类型有以下几种:

  • I:取指令操作
  • L:读数据操作
  • S:写数据操作
  • M:修改数据操作,比如先读一次数据再写一次数据

只有 I 操作没有带前置空格,其他操作都有一个前置空格。地址为 64 位,数据大小以字节为单位。

CSAPP 之 CacheLab 详解

Part A 要求实现的缓存存储器的行为和 csim-ref 一致,使用 LRU 算法进行替换操作。CSAPP 中指出高速缓存存储器可以用四元组 ((S, E, B,m)) 来描述,其中 (S=2^s) 为组数,(E) 为行数,(B=2^b) 为块的大小,(m) 为地址的位数,具体结构如下图所示:

CSAPP 之 CacheLab 详解

对于模拟的高速缓存,至少需要接受 4 个参数:

  • -s:组索引的位数
  • -E:行数
  • -b:块大小 (B=2^b) 中的 (b)
  • -ttrace 文件的路径

根据给定的 trace 文件,模拟的高速缓存 csim 需要给出命中次数、未命中次数和替换次数,只有和 csim-ref 的次数一样才能拿到分数。

代码

我们首先定义一个结构,用来代表高速缓存中的行,由于题目没要求存储数据,所以结构中并没有包含代表缓存块的数组,同时题目要求使用 LRU 替换算法,所以包含一个 time 代表与上次访问相隔多久:

typedef struct {     int valid;     int tag;     int time; } CacheLine, *CacheSet, **Cache; 

接着完成入口函数,进行命令行参数解析和模拟工作:

#include <assert.h> #include <getopt.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "cachelab.h"  int hit, miss, evict;  int s, S, E, b; char filePath[100];  Cache cache;  int main(int argc, char* argv[]) {     int opt;     while ((opt = getopt(argc, argv, "s:E:b:t:")) != -1) {         switch (opt) {             case 's':                 s = atoi(optarg);                 S = 1 << s;                 break;             case 'E':                 E = atoi(optarg);                 break;             case 'b':                 b = atoi(optarg);                 break;             case 't':                 strcpy(filePath, optarg);                 break;         }     }      mallocCache();     simulate();     freeCache();      printSummary(hit, miss, evict);     return 0; } 

由于 (s)(E)(b) 会变,所以需要使用 malloc 函数来在堆上分配空间,使用结束之后还得将这部分空间释放掉:

/* 动态分配缓存空间 */ void mallocCache() {     cache = (Cache)malloc(S * sizeof(CacheSet));     assert(cache);      for (int i = 0; i < S; ++i) {         cache[i] = (CacheSet)malloc(E * sizeof(CacheLine));         assert(cache[i]);     } }  /* 释放缓存空间 */ void freeCache() {     for (int i = 0; i < S; ++i) {         free(cache[i]);     }     free(cache); }  

根据 trace 文件进行模拟的函数如下所示,其中 IS 只需访问缓存一次,而 M 需要两次,且每进行一次操作,就得更新一次时间戳:

/* 模拟缓存读写操作*/ void simulate() {     FILE* file = fopen(filePath, "r");     assert(file);      char op;     uint64_t address;     int size;     while (fscanf(file, " %c %lx,%d", &op, &address, &size) > 0) {         switch (op) {             case 'M':                 accessCache(address);             case 'L':             case 'S':                 accessCache(address);                 break;         }         lruUpdate();     }      fclose(file); }  /* 更新访问时间 */ void lruUpdate() {     for (int i = 0; i < S; ++i) {         for (int j = 0; j < E; ++j) {             if (cache[i][j].valid) {                 cache[i][j].time++;             }         }     } } 

访问缓存的代码如下所示,首先根据组索引选出组,接着行匹配,只有有效位为 1 且 tag 与地址中的 (t) 位标记相同才说明缓冲击中,不然就是未击中。在未击中的情况下,需要将数据写入空行中,如果没有空行就要运行 LRU 算法进行替换。

/* 访问缓存 */ void accessCache(uint64_t address) {     int tag = address >> (b + s);     uint64_t mask = ((1ULL << 63) - 1) >> (63 - s);     CacheSet cacheSet = cache[(address >> b) & mask];      // 缓存击中     for (int i = 0; i < E; ++i) {         if (cacheSet[i].valid && cacheSet[i].tag == tag) {             hit++;             cacheSet[i].time = 0;             return;         }     }      miss++;      // 有空位,直接写入     for (int i = 0; i < E; ++i) {         if (!cacheSet[i].valid) {             cacheSet[i].valid = 1;             cacheSet[i].tag = tag;             cacheSet[i].time = 0;             return;         }     }      // 没有空位,只能使用 LRU 算法进行替换     evict++;     int evictIndex = 0;     int maxTime = 0;     for (int i = 0; i < E; ++i) {         if (cacheSet[i].time > maxTime) {             maxTime = cacheSet[i].time;             evictIndex = i;         }     }      cacheSet[evictIndex].tag = tag;     cacheSet[evictIndex].time = 0; } 

最终运行结果如下,发现模拟结果和参考答案一致:

CSAPP 之 CacheLab 详解

Part B

Part B 给出了最原始的转置操作代码:

void trans(int M, int N, int A[N][M], int B[M][N]) {     int i, j, tmp;      for (i = 0; i < N; i++) {         for (j = 0; j < M; j++) {             tmp = A[i][j];             B[j][i] = tmp;         }     } } 

题目要求针对 (32times 32)(64times 64)(61times 67) 这三种维度的矩阵进行优化,同时给出了以下两点友情提示:

  • 使用分块技术进行优化
  • 对角线上的元素会引发冲突未击中

由于高速缓存的 (S=2^s=32)(E=1)(B=2^b=32),且矩阵中的元素为 int 类型,缓存的每行可以装入 8 个整数,所以对于 (32times 32) 的矩阵,分块大小取为 8,代码如下所示:

for (int i = 0; i < N; i += 8)     for (int j = 0; j < M; j += 8)         for (int ii = i; ii < i + 8; ++ii)             for (int jj=j; jj < j + 8; ++jj)                 B[jj][ii] = A[ii][jj]; 

测试效果如下图所示,发现未命中次数为 343 次,而满分要求未命中小于 300 次:

CSAPP 之 CacheLab 详解

根据友情提示,我们应该避免对角线上元素原地转置引发的冲突未命中问题,所以使用循环展开直接访问行中的 8 个元素并赋值给 (B),将代码修改如下:

int a, b, c, d, e, f, g, h; for (int i = 0; i < N; i += 8) {     for (int j = 0; j < M; j += 8) {         for (int ii = i; ii < i + 8; ++ii) {             a = A[ii][j];             b = A[ii][j + 1];             c = A[ii][j + 2];             d = A[ii][j + 3];             e = A[ii][j + 4];             f = A[ii][j + 5];             g = A[ii][j + 6];             h = A[ii][j + 7];              B[j][ii] = a;             B[j + 1][ii] = b;             B[j + 2][ii] = c;             B[j + 3][ii] = d;             B[j + 4][ii] = e;             B[j + 5][ii] = f;             B[j + 6][ii] = g;             B[j + 7][ii] = h;         }     } } 

再次测试,未命中次数为 287 次:

CSAPP 之 CacheLab 详解

对于 (64times 64) 大小的矩阵,如果同样使用 (8times 8) 的分块,会发现命中次数和未分块情况下一模一样,为 4723 次左右。所以这里把分块换成 (4times 4) 的,代码如下所示:

int a, b, c, d; for (int i = 0; i < N; i += 4) {     for (int j = 0; j < M; j += 4) {         for (int ii = i; ii < i + 4; ++ii) {             a = A[ii][j];             b = A[ii][j + 1];             c = A[ii][j + 2];             d = A[ii][j + 3];              B[j][ii] = a;             B[j + 1][ii] = b;             B[j + 2][ii] = c;             B[j + 3][ii] = d;         }     } } 

测试结果如下图所示,未命中次数为 1699 次,虽然没有达到低于 1300 次的满分要求(但是至少拿了一点分数):

CSAPP 之 CacheLab 详解

最后是 (61times 67) 维度的矩阵,因为这个维度不能被 8 整除,所以先使用分块处理一部分元素,对剩下的元素再单独处理:

int a, b, c, d, e, f, g, h; int n = 8 * (N / 8); int m = 8 * (M / 8); for (int i = 0; i < n; i += 8) {     for (int j = 0; j < m; j += 8) {         for (int ii = i; ii < i + 8; ++ii) {             a = A[ii][j];             b = A[ii][j + 1];             c = A[ii][j + 2];             d = A[ii][j + 3];             e = A[ii][j + 4];             f = A[ii][j + 5];             g = A[ii][j + 6];             h = A[ii][j + 7];              B[j][ii] = a;             B[j + 1][ii] = b;             B[j + 2][ii] = c;             B[j + 3][ii] = d;             B[j + 4][ii] = e;             B[j + 5][ii] = f;             B[j + 6][ii] = g;             B[j + 7][ii] = h;         }     } }  // 处理剩余部分 for (int i = 0; i < n; i++) {     for (int j = m; j < M; j++) {         B[j][i] = A[i][j];     } }  for (int i = n; i < N; i++) {     for (int j = 0; j < M; j++) {         B[j][i] = A[i][j];     } } 

测试结果如下图所示,未命中次数为 2093,接近满分 2000:

CSAPP 之 CacheLab 详解

总结

通过这次实验,可以加深对存储器层次结构和高速缓存工作原理的理解,为后续学习打下铺垫(经典实验报告总结)。以上~~

发表评论

相关文章