Java指令重排序在多线程环境下的应对策略


一、序言

指令重排在单线程环境下有利于提高程序的执行效率,不会对程序产生负面影响;在多线程环境下,指令重排会给程序带来意想不到的错误。

本文对多线程指令重排问题进行复原,并针对指令重排给出相应的解决方案。

二、问题复原

(一)关联变量

下面给出一个能够百分之百复原指令重排的例子。

public class D {     static Integer a;     static Boolean flag;          public static void writer() {         a = 1;         flag = true;     }          public static void reader() {         if (flag != null && flag) {             System.out.println(a);             a = 0;             flag = false;         }     } } 
1、结果预测

reader方法仅在flag变量为true时向控制台打印变量a的值。

writer方法先执行变量a的赋值操作,后执行变量flag的赋值操作。

如果按照上述分析逻辑,那么控制台打印的结果一定全为1。

2、指令重排

假如代码未发生指令重排,那么当flag变量为true时,变量a一定为1。

上述代码中关于变量a和变量flag在两个方法类均存在指令重排的情况。

public static void writer() {     a = 1;     flag = true; } 

通过观察日志输出,发现有大量的0输出。

writer方法内部发生指令重排时,flag变量先完成赋值,此时假如当前线程发生中断,其它线程在调用reader方法,检测到flag变量为true,那么便打印变量a的值。此时控制台存在超出期望值的结果。

(二)new创建对象

使用关键字new创建对象时,因其非原子操作,故存在指令重排,指令重排在多线程环境下会带来负面影响。

public class Singleton {     private static UserModel instance;          public static UserModel getInstance() {         if (instance == null) {             synchronized (Singleton.class) {                 if (instance == null) {                     instance = new UserModel(2, "B");                 }             }         }         return instance;     } }  @Data @AllArgsConstructor class UserModel {     private Integer userId;     private String userName; } 
1、解析创建过程
  • 使用关键字new创建一个对象,大致分为一下过程:
  • 在栈空间创建引用地址
  • 以类文件为模版在堆空间对象分配内存
  • 成员变量初始化
  • 使用构造函数初始化
  • 将引用值赋值给左侧存储变量
2、重排序过程分析

针对上述示例,假设第一个线程进入synchronized代码块,并开始创建对象,由于重排序存在,正常的创建对象过程被打乱,可能会出现在栈空间创建引用地址后,将引用值赋值给左侧存储变量,随后因CPU调度时间片耗尽而产生中断的情况。

后续线程在检测到instance变量不为空,则直接使用。因为单例对象并为实例化完成,直接使用会带来意想不到的结果。

三、应对指令重排

(一)AtomicReference原子类

使用原子类将一组相关联的变量封装成一个对象,利用原子操作的特性,有效回避指令重排问题。

@Data @NoArgsConstructor @AllArgsConstructor public class ValueModel {     private Integer value;     private Boolean flag; } 

原子类应该是解决多线程环境下指令重排的首选方案,不仅通俗易懂,而且线程间使用的非重量级互斥锁,效率相对较高。

public class E {     private static final AtomicReference<ValueModel> ar = new AtomicReference<>(new ValueModel());          public static void writer() {         ar.set(new ValueModel(1, true));     }          public static void reader() {         ValueModel valueModel = ar.get();         if (valueModel.getFlag() != null && valueModel.getFlag()) {             System.out.println(valueModel.getValue());             ar.set(new ValueModel(0, false));         }     } } 

当一组相关联的变量发生指令重排时,使用原子操作类是比较优的解法。

(二)volatile关键字

public class Singleton {     private volatile static UserModel instance;          public static UserModel getInstance() {         if (instance == null) {             synchronized (Singleton.class) {                 if (instance == null) {                     instance = new UserModel(2, "B");                 }             }         }         return instance;     } }  @Data @AllArgsConstructor class UserModel {     private Integer userId;     private String userName; } 

四、指令重排的理解

1、指令重排广泛存在

指令重排不仅限于Java程序,实际上各种编译器均有指令重排的操作,从软件到CPU硬件都有。指令重排是对单线程执行的程序的一种性能优化,需要明确的是,指令重排在单线程环境下,不会改变顺序程序执行的预期结果。

2、多线程环境指令重排

上面讨论了两种典型多线程环境下指令重排,分析其带来负面影响,并分别提供了应对方式。

  • 对于关联变量,先封装成一个对象,然后使用原子类来操作
  • 对于new对象,使用volatile关键字修饰目标对象即可
3、synchronized锁与重排序无关

synchronized锁通过互斥锁,有序的保证线程访问特定的代码块。代码块内部的代码正常按照编译器执行的策略重排序。

尽管synchronized锁能够回避多线程环境下重排序带来的不利影响,但是互斥锁带来的线程开销相对较大,不推荐使用。

synchronized 块里的非原子操作依旧可能发生指令重排

发表评论

相关文章