大纲
1.关于Netty客户端连接接入问题整理
2.Reactor线程模型和服务端启动流程
3.Netty新连接接入的整体处理逻辑
4.新连接接入之检测新连接
5.新连接接入之创建NioSocketChannel
6.新连接接入之绑定NioEventLoop线程
7.新连接接入之注册Selector和注册读事件
8.注册Reactor线程总结
9.新连接接入总结
1.关于Netty客户端连接接入问题整理
一.Netty是在哪里检测有新连接接入的?
答:boss线程第一个过程轮询出ACCEPT事件,然后boss线程第二个过程通过JDK底层Channel的accept()方法创建一条连接。
二.新连接是怎样注册到NioEventLoop线程的?
答:boss线程调用chooser的next()方法拿到一个NioEventLoop,然后将新连接注册到NioEventLoop的Selector上。
2.Reactor线程模型和服务端启动流程
(1)Netty中的Reactor线程模型
(2)服务端启动流程
(1)Netty中的Reactor线程模型
Netty中最核心的是两种类型的Reactor线程,这两种类型的Reactor线程可以看作Netty中的两组发动机,驱动着Netty整个框架的运转。一种类型是boss线程,专门用来接收新连接,然后将连接封装成Channel对象传递给worker线程。另一种类型是worker线程,专门用来处理连接上的数据读写。
boss线程和worker线程所做的事情均分为3步。第一是轮询注册在Selector上的IO事件,第二是处理IO事件,第三是执行异步任务。对boss线程来说,第一步轮询出来的基本都是ACCEPT事件,表示有新的连接。对worker线程来说,第一步轮询出来的基本都是READ事件或WRITE事件,表示网络的读写。
(2)服务端启动流程
服务端是在用户线程中开启的,通过ServerBootstrap.bind()方法,在第一次添加异步任务的时候启动boss线程。启动之后,当前服务器就可以开启监听。
3.Netty新连接接入的整体处理逻辑
新连接接入的处理总体就是:检测新连接 + 注册Reactor线程,具体就可以分为如下4个过程。
一.检测新连接
服务端Channel对应的NioEventLoop会轮询该Channel绑定的Selector中是否发生了ACCEPT事件,如果是则说明有新连接接入了。
二.创建NioSocketChannel
检测出新连接之后,便会基于JDK NIO的Channel创建出一个NioSocketChannel,也就是客户端Channel。
三.分配worker线程及注册Selector
接着Netty给客户端Channel分配一个NioEventLoop,也就是分配worker线程。然后把这个客户端Channel注册到这个NioEventLoop对应的Selector上,之后这个客户端Channel的读写事件都会由这个NioEventLoop进行处理。
四.向Selector注册读事件
最后向这个客户端Channel对应的Selector注册READ事件,注册的逻辑和服务端Channel启动时注册ACCEPT事件的一样。
4.新连接接入之检测新连接
(1)何时会检测到有新连接
(2)新连接接入的流程梳理
(3)新连接接入的总结
(1)何时会检测到有新连接
当调用辅助启动类ServerBootstrap的bind()方法启动服务端之后,服务端的Channel也就是NioServerSocketChannel就会注册到boss的Reactor线程上。boss的Reactor线程会不断检测是否有新的事件,直到检测出有ACCEPT事件发生即有新连接接入。此时boss的Reactor线程将通过服务端Channel的unsafe变量来进行实际操作。
注意:服务端Channel的unsafe变量是一个NioMessageUnsafe对象,客户端Channel的unsafe变量是一个NioByteUnsafe对象。
//SingleThreadEventLoop implementation which register the Channel's to a Selector and so does the multi-plexing of these in the event loop. public final class NioEventLoop extends SingleThreadEventLoop { Selector selector; private SelectedSelectionKeySet selectedKeys; private boolean needsToSelectAgain; private int cancelledKeys; ... @Override protected void run() { for (;;) { ... //1.调用select()方法执行一次事件轮询 select(wakenUp.getAndSet(false)); if (wakenUp.get()) { selector.wakeup(); } ... //2.处理产生IO事件的Channel needsToSelectAgain = false; processSelectedKeys(); ... //3.执行外部线程放入TaskQueue的任务 runAllTasks(ioTime * (100 - ioRatio) / ioRatio); } } private void processSelectedKeys() { if (selectedKeys != null) { //selectedKeys.flip()会返回一个数组 processSelectedKeysOptimized(selectedKeys.flip()); } else { processSelectedKeysPlain(selector.selectedKeys()); } } private void processSelectedKeysOptimized(SelectionKey[] selectedKeys) { for (int i = 0;; i ++) { //1.首先取出IO事件 final SelectionKey k = selectedKeys[i]; if (k == null) { break; } selectedKeys[i] = null;//Help GC //2.然后获取对应的Channel和处理该Channel //默认情况下,这个a就是NioChannel,也就是服务端启动时经过Netty封装的Channel final Object a = k.attachment(); if (a instanceof AbstractNioChannel) { //网络事件的处理 processSelectedKey(k, (AbstractNioChannel) a); } else { //NioTask主要用于当一个SelectableChannel注册到Selector时,执行的一些任务 NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a; processSelectedKey(k, task); } //3.最后判断是否应该再进行一次轮询 if (needsToSelectAgain) { for (;;) { i++; if (selectedKeys[i] == null) { break; } selectedKeys[i] = null; } selectAgain(); //selectedKeys.flip()会返回一个数组 selectedKeys = this.selectedKeys.flip(); i = -1; } } } private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) { final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe(); if (!k.isValid()) { final EventLoop eventLoop; try { eventLoop = ch.eventLoop(); } catch (Throwable ignored) { //If the channel implementation throws an exception because there is no event loop, //we ignore this because we are only trying to determine if ch is registered to this event loop and thus has authority to close ch. return; } //Only close ch if ch is still registerd to this EventLoop. //ch could have deregistered from the event loop and thus the SelectionKey could be cancelled as part of the deregistration process, //but the channel is still healthy and should not be closed. if (eventLoop != this || eventLoop == null) { return; } //close the channel if the key is not valid anymore unsafe.close(unsafe.voidPromise()); return; } try { int readyOps = k.readyOps(); //We first need to call finishConnect() before try to trigger a read(...) or write(...) as otherwise //the NIO JDK channel implementation may throw a NotYetConnectedException. if ((readyOps & SelectionKey.OP_CONNECT) != 0) { //remove OP_CONNECT as otherwise Selector.select(..) will always return without blocking int ops = k.interestOps(); ops &= ~SelectionKey.OP_CONNECT; k.interestOps(ops); unsafe.finishConnect(); } //Process OP_WRITE first as we may be able to write some queued buffers and so free memory. if ((readyOps & SelectionKey.OP_WRITE) != 0) { //Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write ch.unsafe().forceFlush(); } //Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead to a spin loop //boss的Reactor线程已经轮询到有ACCEPT事件,即表明有新连接接入 //此时将调用Channel的unsafe变量来进行实际操作 if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) { //进行新连接接入处理 unsafe.read(); if (!ch.isOpen()) { //Connection already closed - no need to handle write. return; } } } catch (CancelledKeyException ignored) { unsafe.close(unsafe.voidPromise()); } } ... }
(2)新连接接入的流程梳理
一.NioMessageUnsafe的read()方法说明
首先使用一条断言确保该read()方法必须来自Reactor线程调用,然后获得Channel对应的Pipeline和RecvByteBufAllocator.Handle。
接着调用NioServerSocketChannel的doReadMessages()方法不断地读取新连接到readBuf容器。然后使用for循环处理readBuf容器里的新连接,也就是通过pipeline.fireChannelRead()方法让每个新连接都经过一层服务端Channel的Pipeline逻辑处理,最后清理容器并执行pipeline.fireChannelReadComplete()。
//AbstractNioChannel base class for Channels that operate on messages. public abstract class AbstractNioMessageChannel extends AbstractNioChannel { ... private final class NioMessageUnsafe extends AbstractNioUnsafe { //临时存放读到的连接NioSocketChannel private final List<Object> readBuf = new ArrayList<Object>(); @Override public void read() { //断言确保该read()方法必须来自Reactor线程调用 assert eventLoop().inEventLoop(); //获得Channel对应的Pipeline final ChannelPipeline pipeline = pipeline(); //获得Channel对应的RecvByteBufAllocator.Handle final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle(); do { //1.调用NioServerSocketChannel的doReadMessages()方法创建NioSocketChannel //通过JDK的accept()方法去创建JDK Channel,然后把它包装成Netty自定义的Channel int localRead = doReadMessages(readBuf); if (localRead == 0) { break; } } while (allocHandle.continueReading());//控制连接的接入速率,默认一次性读取16个连接 //2.设置并绑定NioSocketChannel int size = readBuf.size(); for (int i = 0; i < size; i ++) { pipeline.fireChannelRead(readBuf.get(i)); } //3.清理容器并触发pipeline.fireChannelReadComplete() readBuf.clear(); pipeline.fireChannelReadComplete(); } } //Read messages into the given array and return the amount which was read. protected abstract int doReadMessages(List<Object> buf) throws Exception; ... }
二.新连接接入的流程梳理
首先会从服务端Channel对应的NioEventLoop的run()方法的第二个步骤处理IO事件开始。然后会调用服务端Channel的unsafe变量的read()方法,也就是NioMessageUnsafe对象的read()方法。
接着循环调用NioServerSocketChannel的doReadMessages()方法来创建新连接对象NioSocketChannel。其中创建新连接对象最核心的方法就是调用JDK Channel的accept()方法来创建JDK Channel。
与服务端启动一样,Netty会把JDK底层Channel包装成Netty自定义的NioSocketChannel。
NioEventLoop.processSelectedKeys(key, channel) //入口 NioMessageUnsafe.read() //新连接接入处理 NioServerSocketChannel.doReadMessages() //创建新连接对象NioSocketChannel javaChannel.accept() //创建JDK Channel
(3)新连接接入的总结
在服务端Channel对应的NioEventLoop的run()方法的processSelectedKeys()方法里,发现产生的IO事件是ACCEPT事件之后,会通过JDK Channel的accept()方法取创建JDK的Channel,并把它包装成Netty自定义的NioSocketChannel。在这个过程中会通过一个RecvByteBufAllocator.Handle对象控制连接接入的速率,默认一次性读取16个连接。
5.新连接接入之创建NioSocketChannel
(1)doReadMessages()方法相关说明
(2)创建NioSocketChannel的流程梳理
(3)创建NioSocketChannel的总结
(4)Netty中的Channel分类
(1)doReadMessages()方法相关说明
首先通过javaChannel().accept()创建一个JDK的Channel,即客户端Channel。然后把服务端Channel和这个客户端Channel作为参数传入NioSocketChannel的构造方法中,从而把JDK的Channel封装成Netty自定义的NioSocketChannel。最后把封装好的NioSocketChannel添加到一个List里,以便外层可以遍历List进行处理。
//A ServerSocketChannel implementation which uses NIO selector based implementation to accept new connections. public class NioServerSocketChannel extends AbstractNioMessageChannel implements ServerSocketChannel { private static final SelectorProvider DEFAULT_SELECTOR_PROVIDER = SelectorProvider.provider(); private final ServerSocketChannelConfig config; ... @Override protected int doReadMessages(List<Object> buf) throws Exception { //1.创建JDK的Channel SocketChannel ch = javaChannel().accept(); //2.封装成Netty的Channel,即把服务端Channel和客户端Channel当作参数传递到NioSocketChannel的构造方法里 if (ch != null) { //先创建一个NioSocketChannel对象,再添加到buf里 buf.add(new NioSocketChannel(this, ch)); return 1; } return 0; } //Create a new instance public NioServerSocketChannel() { //创建服务端Channel this(newSocket(DEFAULT_SELECTOR_PROVIDER)); } private static ServerSocketChannel newSocket(SelectorProvider provider) { //创建服务端Channel return provider.openServerSocketChannel(); } //Create a new instance using the given ServerSocketChannel. public NioServerSocketChannel(ServerSocketChannel channel) { //创建服务端Channel,关注ACCEPT事件 super(null, channel, SelectionKey.OP_ACCEPT); //javaChannel().socket()会调用JDK Channel的socket()方法 config = new NioServerSocketChannelConfig(this, javaChannel().socket()); } @Override protected ServerSocketChannel javaChannel() { //返回一个JDK的Channel -> ServerSocketChannel return (ServerSocketChannel) super.javaChannel(); } ... } //AbstractNioChannel base class for Channels that operate on messages. public abstract class AbstractNioMessageChannel extends AbstractNioChannel { ... //创建服务端Channel protected AbstractNioMessageChannel(Channel parent, SelectableChannel ch, int readInterestOp) { super(parent, ch, readInterestOp); } @Override protected AbstractNioUnsafe newUnsafe() { return new NioMessageUnsafe(); } ... } //SocketChannel which uses NIO selector based implementation. public class NioSocketChannel extends AbstractNioByteChannel implements io.netty.channel.socket.SocketChannel { private final SocketChannelConfig config; ... //Create a new instance //@param parent,the Channel which created this instance or null if it was created by the user //@param socket,the SocketChannel which will be used public NioSocketChannel(Channel parent, SocketChannel socket) { //创建客户端Channel super(parent, socket); config = new NioSocketChannelConfig(this, socket.socket()); } @Override protected SocketChannel javaChannel() { //返回一个JDK的Channel -> ServerSocketChannel return (SocketChannel) super.javaChannel(); } private final class NioSocketChannelConfig extends DefaultSocketChannelConfig { private NioSocketChannelConfig(NioSocketChannel channel, Socket javaSocket) { super(channel, javaSocket); } ... } ... } //The default SocketChannelConfig implementation. public class DefaultSocketChannelConfig extends DefaultChannelConfig implements SocketChannelConfig { protected final Socket javaSocket; //Creates a new instance. public DefaultSocketChannelConfig(SocketChannel channel, Socket javaSocket) { ... this.javaSocket = javaSocket; setTcpNoDelay(true);//禁止Nagle算法 ... } ... } //AbstractNioChannel base class for Channels that operate on bytes. public abstract class AbstractNioByteChannel extends AbstractNioChannel { ... //Create a new instance //@param parent,the parent Channel by which this instance was created. May be null //@param ch,the underlying SelectableChannel on which it operates protected AbstractNioByteChannel(Channel parent, SelectableChannel ch) { //创建客户端Channel,关注READ事件 super(parent, ch, SelectionKey.OP_READ); } @Override protected AbstractNioUnsafe newUnsafe() { return new NioByteUnsafe(); } ... } //Abstract base class for Channel implementations which use a Selector based approach. public abstract class AbstractNioChannel extends AbstractChannel { private final SelectableChannel ch; protected final int readInterestOp; ... //Create a new instance //@param parent,the parent Channel by which this instance was created. May be null //@param ch,the underlying SelectableChannel on which it operates //@param readInterestOp,the ops to set to receive data from the SelectableChannel protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) { super(parent); this.ch = ch; this.readInterestOp = readInterestOp; ch.configureBlocking(false); ... } protected SelectableChannel javaChannel() { return ch; } @Override public NioUnsafe unsafe() { return (NioUnsafe) super.unsafe(); } ... } //A skeletal Channel implementation. public abstract class AbstractChannel extends DefaultAttributeMap implements Channel { private final Channel parent; private final ChannelId id; private final Unsafe unsafe; private final DefaultChannelPipeline pipeline; ... //Creates a new instance. //@param parent,the parent of this channel. null if there's no parent. protected AbstractChannel(Channel parent) { this.parent = parent; id = newId(); unsafe = newUnsafe(); pipeline = newChannelPipeline(); } //Returns a new DefaultChannelId instance. //Subclasses may override this method to assign custom ChannelIds to Channels that use the AbstractChannel#AbstractChannel(Channel) constructor. protected ChannelId newId() { return DefaultChannelId.newInstance(); } //Create a new AbstractUnsafe instance which will be used for the life-time of the Channel protected abstract AbstractUnsafe newUnsafe(); //Returns a new DefaultChannelPipeline instance. protected DefaultChannelPipeline newChannelPipeline() { return new DefaultChannelPipeline(this); } @Override public Unsafe unsafe() { return unsafe; } @Override public ChannelPipeline pipeline() { return pipeline; } @Override public EventLoop eventLoop() { EventLoop eventLoop = this.eventLoop; if (eventLoop == null) throw new IllegalStateException("channel not registered to an event loop"); return eventLoop; } protected abstract class AbstractUnsafe implements Unsafe { @Override public final void register(EventLoop eventLoop, final ChannelPromise promise) { ... //绑定事件循环器,即绑定一个NioEventLoop到该Channel上 AbstractChannel.this.eventLoop = eventLoop; //注册Selector,并启动一个NioEventLoop if (eventLoop.inEventLoop()) { register0(promise); } else { ... //通过启动这个NioEventLoop线程来调用register0()方法将这个服务端Channel注册到Selector上 //其实执行的是SingleThreadEventExecutor的execute()方法 eventLoop.execute(new Runnable() { @Override public void run() { register0(promise); } }); ... } } ... } ... }
(2)创建NioSocketChannel的流程梳理
NioServerSocketChannel和NioSocketChannel都有同一个父类AbstractNioChannel,所以创建NioSocketChannel的模版和创建NioServerSocketChannel保持一致。
但要注意的是:客户端Channel是通过new关键字创建的,服务端Channel是通过反射的方式创建的。
此外,Nagle算法会让小数据包尽量聚合成大的数据包再发送出去,Netty为了使数据能够及时发送出去会禁止该算法。
new NioSocketChannel(p, ch) //入口,客户端Channel是通过new关键字创建的,服务端Channel是通过反射的方式创建的 new AbstractNioByteChannel(p, ch) //逐层调用父类的构造方法 new AbstractNioChannel(p, ch, op_read) //逐层调用父类的构造方法 ch.configureBlocking(false) + save op //配置此Channel为非阻塞,以及将感兴趣的读事件保存到成员变量以方便后续注册到Selector new AbstractChannel() //创建Channel的相关组件: newId() //id作为Channel的唯一标识 newUnsafe() //unsafe用来进行底层数据读写 newChannelPipeline() //pipeline作为业务逻辑载体 new NioSocketChannelConfig() //创建和NioSocketChannel绑定的配置类 setTcpNoDelay(true) //禁止Nagle算法
(3)创建NioSocketChannel的总结
创建NioSocketChannel的逻辑可以分成两部分。
第一部分是逐层调用父类的构造方法,其中会设置这个客户端Channel的阻塞模式为false,然后再把感兴趣的读事件OP_READ保存到这个Channel的成员变量中以便后续注册到Selector,接着会创建一系列的组件,包括作为Channel唯一标识的Id组件、用来进行底层数据读写的unsafe组件、用来作为业务逻辑载体的pipeline组件。
第二部分是创建和这个客户端Channel相关的config对象,该config对象会设置关闭Nagle算法,从而让小数据包尽快发送出去、降低延时。
(4)Netty中的Channel分类
