SourceGenerator 生成db to class代码优化结果记录 二

优化

在上一篇留下的 Dapper AOT 还有什么特别优化点的问题

在仔细阅读生成代码和源码之后,终于得到了答案

个人之前一直以为 Dapper AOT 只用了迭代器去实现,所以理应差不多实现代码却又极大差距,思维陷入了僵局,一度以为有什么黑魔法

结果 Dapper AOT 没有用迭代器去实现!!! 靠北啦,还以为迭代器有新姿势可以优化了

不再使用迭代器

List<BenchmarkTest.Dog> results = new(); try {     while (reader.Read())     {         results.Add(ReadOne(reader, readOnlyTokens));     }     return results; } 

当然就只能要求 用户必须使用 AsList 方法,因为 ToList 会导致复制list的问题, 导致负优化,

像这样

 connection.Query<Dog>("select * from dog").AsList();  // AsList 实现 public static List<T> AsList<T>(this IEnumerable<T>? source) => source switch {     null => null!,     List<T> list => list,     _ => Enumerable.ToList(source), }; 

使用 span

再没有了迭代器方法限制, span 就可以放飞自我,随意使用了

public static BenchmarkTest.Dog ReadOne(this IDataReader reader, ref ReadOnlySpan<int> ss) {     var d = new BenchmarkTest.Dog();     for (int j = 0; j < ss.Length; j++)     { 

使用 ArrayPool 减少内存占用

public Span<int> GetTokens() {     FieldCount = Reader!.FieldCount;     if (Tokens is null || Tokens.Length < FieldCount)     {         // no leased array, or existing lease is not big enough; rent a new array         if (Tokens is not null) ArrayPool<int>.Shared.Return(Tokens);         Tokens = ArrayPool<int>.Shared.Rent(FieldCount);     }     return MemoryMarshal.CreateSpan(ref MemoryMarshal.GetArrayDataReference(Tokens), FieldCount); } 

数据小时使用栈分配

 var s = reader.FieldCount <= 64 ? MemoryMarshal.CreateSpan(ref MemoryMarshal.GetReference(stackalloc int[reader.FieldCount]), reader.FieldCount) :  state.GetTokens(); 

提前生成部分 hashcode 进行比较

因为比较现在也并不耗时了, 所以 缓存也没有必要了, 也一并移除

public static void GenerateReadTokens(this IDataReader reader, Span<int> s) {     for (int i = 0; i < reader.FieldCount; i++)     {         var name = reader.GetName(i);         var type = reader.GetFieldType(i);         switch (EntitiesGenerator.NormalizedHash(name))         {                          case 742476188U:                 s[i] = type == typeof(int) ? 1 : 2;                  break;              case 2369371622U:                 s[i] = type == typeof(string) ? 3 : 4;                  break;              case 1352703673U:                 s[i] = type == typeof(float) ? 5 : 6;                  break;              default:                 break;         }     } } 

性能测试说明

BenchmarkDotNet

这里特别说明一下

使用的 BenchmarkDotNet ,其本身已经考虑了 jit优化等等方面, 有预热,超多次执行,

结果值也是按照统计学有考虑结果集分布情况处理,移除变差大的值(比如少数的孤立的极大极小值), 差异不大情况,一般显示平均值,有大差异时还会显示 中位值

感兴趣的童鞋可以去 https://github.com/dotnet/BenchmarkDotNet 了解

chole 有点棘手,为了方便mock,所以 copy了部分源码,只比较实体映射部分

DapperAOT 和 纯 dapper 很难一起运行,所以不再比较了,反正 dapper 肯定慢

测试数据

测试数据 正如之前说过, 采用 手动 mock 方式,避免 db 驱动 、db 执行、mock库 等等 带来的执行差异影响

class

非常简单的类,当然不能代表所有情况,不过简单测试够用了

public class Dog {     public int? Age { get; set; }     public string Name { get; set; }     public float? Weight { get; set; } } 

mock 数据

 public class TestDbConnection : DbConnection  {      public int RowCount { get; set; }      public IDbCommand CreateCommand()     {         return new TestDbCommand() { RowCount = RowCount };     } }  public class TestDbCommand : DbCommand {     public int RowCount { get; set; }      public IDataParameterCollection Parameters { get; } = new TestDataParameterCollection();     public IDbDataParameter CreateParameter()       {          return new TestDataParameter();       }          protected override DbDataReader ExecuteDbDataReader(CommandBehavior behavior)         {             return new TestDbDataReader() { RowCount = RowCount };         } }      public class TestDbDataReader : DbDataReader     {         public int RowCount { get; set; }         private int calls = 0;         public override object this[int ordinal]          {             get             {                 switch (ordinal)                 {                     case 0:                         return "XX";                     case 1:                         return 2;                     case 2:                         return 3.3f;                     default:                         return null;                 }             }                  }       public override int FieldCount => 3;        public override Type GetFieldType(int ordinal)       {           switch (ordinal)           {               case 0:                   return typeof(string);               case 1:                   return typeof(int);               case 2:                   return typeof(float);               default:                   return null;           }       }        public override float GetFloat(int ordinal)       {           switch (ordinal)           {               case 2:                   return 3.3f;               default:                   return 0;           }       }         public override int GetInt32(int ordinal)         {             switch (ordinal)             {                 case 1:                     return 2;                 default:                     return 0;             }         }         public override string GetName(int ordinal)         {             switch (ordinal)             {                 case 0:                     return "Name";                 case 1:                     return "Age";                 case 2:                     return "Weight";                 default:                     return null;             }         }         public override string GetString(int ordinal)         {             switch (ordinal)             {                 case 0:                     return "XX";                 default:                     return null;             }         }          public override object GetValue(int ordinal)         {             switch (ordinal)             {                 case 0:                     return "XX";                 case 1:                     return 2;                 case 2:                     return 3.3f;                 default:                     return null;             }         }          public override bool Read()         {             calls++;             return calls <= RowCount;         } } 

Benchmark 代码

    [MemoryDiagnoser, Orderer(summaryOrderPolicy: SummaryOrderPolicy.FastestToSlowest), GroupBenchmarksBy(BenchmarkLogicalGroupRule.ByCategory), CategoriesColumn]     public class ObjectMappingTest     {         [Params(1, 1000, 10000, 100000, 1000000)]         public int RowCount { get; set; }          [Benchmark(Baseline = true)]         public void SetClass()         {             var connection = new TestDbConnection() { RowCount = RowCount };             var dogs = new List<Dog>();             try             {                 connection.Open();                 var cmd = connection.CreateCommand();                 cmd.CommandText = "select ";                 using (var reader = cmd.ExecuteReader(CommandBehavior.Default))                 {                     while (reader.Read())                     {                         var dog = new Dog();                         dogs.Add(dog);                         dog.Name = reader.GetString(0);                         dog.Age = reader.GetInt32(1);                         dog.Weight = reader.GetFloat(2);                     }                 }             }             finally             {                 connection.Close();             }         }          [Benchmark]         public void DapperAOT()         {             var connection = new TestDbConnection() { RowCount = RowCount };             var dogs = connection.Query<Dog>("select * from dog").AsList();         }          [Benchmark]         public void SourceGenerator()         {             var connection = new TestDbConnection() { RowCount = RowCount };             List<Dog> dogs;             try             {                 connection.Open();                 var cmd = connection.CreateCommand();                 cmd.CommandText = "select ";                 using (var reader = cmd.ExecuteReader(CommandBehavior.Default))                 {                     dogs = reader.ReadTo<Dog>().AsList();                 }             }             finally             {                 connection.Close();             }         }          [Benchmark]         public void Chloe()         {             var connection = new TestDbConnection() { RowCount = RowCount };             try             {                 connection.Open();                 var cmd = connection.CreateCommand();                 var dogs = new InternalSqlQuery<Dog>(cmd, "select").AsList();             }             finally             {                 connection.Close();             }         }     } 

完整代码可以参考 https://github.com/fs7744/SlowestEM

测试结果

 BenchmarkDotNet v0.13.12, Windows 10 (10.0.19045.4651/22H2/2022Update) Intel Core i7-10700 CPU 2.90GHz, 1 CPU, 16 logical and 8 physical cores .NET SDK 9.0.100-preview.5.24307.3   [Host]     : .NET 8.0.6 (8.0.624.26715), X64 RyuJIT AVX2   DefaultJob : .NET 8.0.6 (8.0.624.26715), X64 RyuJIT AVX2   
Method RowCount Mean Error StdDev Ratio RatioSD Gen0 Gen1 Gen2 Allocated Alloc Ratio
DapperAOT 1 446.3 ns 8.81 ns 8.65 ns 0.60 0.03 0.0525 0.0515 - 440 B 1.00
SourceGenerator 1 690.0 ns 13.72 ns 32.34 ns 0.95 0.07 0.0525 0.0515 - 440 B 1.00
SetClass 1 728.3 ns 14.59 ns 37.41 ns 1.00 0.00 0.0525 0.0515 - 440 B 1.00
Chloe 1 909.7 ns 17.49 ns 22.75 ns 1.25 0.06 0.1020 0.1011 - 856 B 1.95
SetClass 1000 8,593.3 ns 169.90 ns 390.38 ns 1.00 0.00 6.7902 1.6937 - 56912 B 1.00
SourceGenerator 1000 16,967.8 ns 310.02 ns 258.88 ns 1.91 0.08 6.7749 1.6785 - 56912 B 1.00
DapperAOT 1000 18,299.7 ns 267.72 ns 250.43 ns 2.06 0.09 6.7749 1.3428 - 56912 B 1.00
Chloe 1000 116,049.4 ns 297.71 ns 263.91 ns 13.06 0.54 6.8359 1.7090 - 57328 B 1.01
SetClass 10000 309,255.1 ns 3,945.26 ns 3,294.47 ns 1.00 0.00 83.0078 82.5195 41.5039 662782 B 1.00
DapperAOT 10000 402,700.7 ns 7,676.45 ns 7,180.56 ns 1.31 0.03 83.0078 82.5195 41.5039 662782 B 1.00
SourceGenerator 10000 414,226.2 ns 8,149.22 ns 10,007.97 ns 1.34 0.04 83.0078 82.5195 41.5039 662782 B 1.00
Chloe 10000 1,453,166.1 ns 19,660.10 ns 17,428.16 ns 4.70 0.07 82.0313 80.0781 41.0156 663199 B 1.00
SetClass 100000 2,176,860.4 ns 42,449.84 ns 63,536.93 ns 1.00 0.00 496.0938 496.0938 496.0938 6098015 B 1.00
SourceGenerator 100000 3,045,760.4 ns 59,378.23 ns 63,534.04 ns 1.39 0.05 496.0938 496.0938 496.0938 6098015 B 1.00
DapperAOT 100000 3,053,510.0 ns 35,015.61 ns 29,239.62 ns 1.40 0.04 496.0938 496.0938 496.0938 6098015 B 1.00
Chloe 100000 13,152,653.6 ns 65,400.49 ns 51,060.40 ns 6.02 0.14 484.3750 484.3750 484.3750 6098433 B 1.00
SetClass 1000000 105,420,410.0 ns 2,093,734.23 ns 3,380,990.50 ns 1.00 0.00 6800.0000 6800.0000 2200.0000 56780029 B 1.00
SourceGenerator 1000000 115,534,043.8 ns 1,828,036.86 ns 1,795,376.62 ns 1.09 0.03 6800.0000 6800.0000 2200.0000 56780118 B 1.00
DapperAOT 1000000 115,751,485.5 ns 2,120,239.39 ns 2,603,844.38 ns 1.10 0.04 6800.0000 6800.0000 2200.0000 56780029 B 1.00
Chloe 1000000 208,295,919.3 ns 4,031,590.18 ns 4,481,101.81 ns 1.97 0.06 6666.6667 6666.6667 2333.3333 56781907 B 1.00

SourceGenerator 基本等同 DapperAOT 了, 除了没有使用 Interceptor, 以及各种情况细节没有考虑之外, 两者性能一样

SourceGenerator 肯定现在性能优化最佳方式,毕竟可以生成代码文件,上手难度其实比 emit 之类小多了

发表评论

相关文章