杨辉三角的5个特性,一个比一个牛皮!

作者:小傅哥
博客:https://bugstack.cn

沉淀、分享、成长,让自己和他人都能有所收获!😄

一、前言

杨辉三角的历史

杨辉三角按照杨辉于1261年所编写的《详解九章算法》一书,里面有一张图片,介绍此种算法来自于另外一个数学家贾宪所编写的《释锁算书》一书,但这本书早已失传无从考证。但可以肯定的是这一图形的发现我国不迟于1200年左右。在欧洲,这图形称为"巴斯加(Pascal)三角"。因为一般都认为这是巴斯加在1654年发明的。其实在巴斯加之前已经有许多人普及过,最早是德国人阿匹纳斯(Pertrus APianus),他曾经把这个图形刻在1527年著的一本算术书封面上。但无论如何,杨辉三角的发现,在我国比在欧洲至少要早300年光景。

此外杨辉三角原来的名字也不是三角,而是叫做开方作法本源,后来也有人称为乘法求廉图。因为这些名称实在太古奥了些,所以后来简称为“三角”。

在小傅哥学习杨辉三角的过程中,找到了一本大数学家华罗庚的PDF《从杨辉三角谈起 - 华罗庚》。—— 这些数学真的非常重要,每每映射到程序中都是一段把for循环优化成算法的体现,提高执行效率。

二、杨辉三角构造

在开始分享杨辉三角的特性和代码实现前,我们先来了解下杨辉三角的结构构造。

杨辉三角的5个特性,一个比一个牛皮!

杨辉三角的结构和规律非常简单,除去每次两边的1,中间的数字都是上面两个数字的和。如图示意的三角区域。但也就是如此简单的结构,却有着诸多的数学逻辑体现。包括我们计算的二项式、N选X的种数还有斐波那契数列等,都可以在杨辉三角中体现出来。接下来我们就来看看这些特性。

三、杨辉三角特性

为了方便学习杨辉三角的数学逻辑特性,我们把它按左对齐方式进行排列。

[1] [1,1] [1,2,1] [1,3,3,1] [1,4,6,4,1] [1,5,10,10,5,1] [1,6,15,20,15,6,1] [1,7,21,35,35,21,7,1] [1,8,28,56,70,56,28,8,1] 

接下来我们就以这组杨辉三角数列,来展示它的数学逻辑特性。关于杨辉三角的Java代码放已到下文中,读者可以查阅。

1. 二项式展开

大家在上学阶段一定学习过二项式展开,例如:(x+y)^2 = x^2 + 2xy + y^2 其实这个展开的数学逻辑在杨辉三角中可以非常好的展示出来。

杨辉三角的5个特性,一个比一个牛皮!
  • 任意一个二项式展开后的数字乘积,都可以映射到杨辉三角对应的中的数字。
  • 二项式展开公式是用来计算给定二项式的指数幂的展开式的公式。对于给定的二项式 (x + y)n,二项式展开公式为:(x + y)^n = x^n + nx^{n-1}y + n(n-1)x^{n-2}y^2 + ... + y^n 这个公式也正好符合杨辉三角的数字值。

2. 组合数

组合数是数学中定义的一种数学概念,用于计算有多少种选择可以从一组物品中选择出若干的物品。比如你早上有5种水果可以吃,但你吃不了那么多,让你5种水果中选2个,看看有多少种选择。通过使用公式 c(n,k) = n!/k!(n-k)! 可以计算出,5选2有10种选择。

那么这样一个计算也是可以体现在杨辉三角中的。

杨辉三角的5个特性,一个比一个牛皮!
  • 5选2,在杨辉三角中可以找到第5行的第2列,结果是10。按照这个规律,5选3=10、5选4=5

3. 斐波那契数列

斐波那契数列出现在印度数学中,与梵文韵律有关。在梵语诗歌传统中,人们对列举所有持续时间为 2 单位的长 (L) 音节与 1 单位持续时间的短 (S) 音节并列的模式很感兴趣。关于更多斐波那契更多知识可以阅读小傅哥的:《程序员数学:斐波那契》—— 为什么不能用斐波那契散列,做数据库路由算法?

斐波那契数列可以由递归关系定义:F0 = 0,F1 = 1,Fn = Fn-1 + Fn-2

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9
0 1 1 2 3 5 8 13 21 34

而这样一个有规律的斐波那契数列在杨辉三角中也是有所体现的。

杨辉三角的5个特性,一个比一个牛皮!
  • 把斜对角的数字做加和,会得到一组斐波那契数列;1、1、2、3、5、8、13、15、33

4. 次方数

在杨辉三角中还有一个非常有意思的特性,就是有2的次方和11次方数。

2次方

杨辉三角的5个特性,一个比一个牛皮!

- 杨辉三角每一行的数字加和,正好的2的0次方、1次方..n次方

11次方

杨辉三角的5个特性,一个比一个牛皮!

5. 平方数

杨辉三角的5个特性,一个比一个牛皮!

四、杨辉三角实现

接下来我们实现下杨辉三角;

public HashMap<Integer, Integer> pascalTriangle(int lineNumber) {     HashMap<Integer, Integer> currentLine = new HashMap<>();     currentLine.put(0, 1);     int currentLineSize = lineNumber + 1;     for (int numberIdx = 1; numberIdx < currentLineSize; numberIdx += 1) {         /*          * https://github.com/trekhleb/javascript-algorithms/blob/master/src/algorithms/math/pascal-triangle/pascalTriangle.js          * 第i行号中的第 -th 个条目lineNumber是 Binomial CoefficientC(lineNumber, i)并且所有行都以 value 开头1。这个思路是C(lineNumber, i)使用C(lineNumber, i-1). 它可以O(1)使用以下方法及时计算:          * C(lineNumber, i)   = lineNumber! / ((lineNumber - i)! * i!)          * C(lineNumber, i - 1) = lineNumber! / ((lineNumber - i + 1)! * (i - 1)!)          *          * 从以上两个表达式我们可以推导出下面的表达式:C(lineNumber, i) = C(lineNumber, i - 1) * (lineNumber - i + 1) / i          * 所以C(lineNumber, i)可以从C(lineNumber, i - 1)时间上算出来O(1)          */         currentLine.put(numberIdx, ((null == currentLine.get(numberIdx - 1) ? 0 : currentLine.get(numberIdx - 1)) * (lineNumber - numberIdx + 1)) / numberIdx);     }     return currentLine; } 

单元测试

@Test public void test_PascalTriangle() {     PascalTriangle pascalTriangle = new PascalTriangle();     for (int i = 0; i <= 10; i++) {         HashMap<Integer, Integer> currentLineMap = pascalTriangle.pascalTriangle(i);         System.out.println(JSON.toJSONString(currentLineMap.values()));     } }  [1] [1,1] [1,2,1] [1,3,3,1] [1,4,6,4,1] [1,5,10,10,5,1] [1,6,15,20,15,6,1] [1,7,21,35,35,21,7,1] [1,8,28,56,70,56,28,8,1] [1,9,36,84,126,126,84,36,9,1] [1,10,45,120,210,252,210,120,45,10,1] 

五、常见面试题

举报
发表评论

相关文章

当前内容话题
  • 0