前言
数据 data 结构(structure)是一门 研究组织数据方式的学科,有了编程语言也就有了数据结构.学好数据结构才可以编写出更加漂亮,更加有效率的代码。
- 要学习好数据结构就要多多考虑如何将生活中遇到的问题,用程序去实现解决.
- 程序 = 数据结构 + 算法
- 数据结构是算法的基础, 换言之,想要学好算法,需要把数据结构学到位
我会用数据结构与算法【Java】这一系列的博客记录自己的学习过程,如有遗留和错误欢迎大家提出,我会第一时间改正!!!
注:数据结构与算法【Java】这一系列的博客参考于B站尚硅谷的视频,视频原地址为【尚硅谷】数据结构与算法(Java数据结构与算法)
上一篇文章数据结构与算法【Java】07---树结构基础部分
1、堆排序
1.1、堆排序简介
1.堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为 O(nlogn)
,它是不稳定排序。
-
堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大根堆(或大顶堆), 注意 : 没有
要求结点的左孩子的值和右孩子的值的大小关系。 -
每个结点的值都小于或等于其左右孩子结点的值,称为小根堆(或小顶堆)
-
一般升序采用大根堆,降序采用小根堆
1.2、堆排序过程演示
堆排序的基本思想是:
- 将待排序序列构造成一个大根堆
- 此时,整个序列的最大值就是堆顶的根节点。
- 将其与末尾元素进行交换,此时末尾就为最大值。
- 然后将剩余 n-1 个元素重新构造成一个堆,这样会得到 n 个元素的次小值。如此反复执行,便能得到一个有序
序列了。
步骤图解
要求:给你一个数组 {4,6,8,5,9} , 要求使用堆排序法,将数组升序排序。
- 步骤一 构造初始堆。将给定无序序列构造成一个大根堆(一般升序采用大根堆,降序采用小根堆)。
- 原始的数组 [4, 6, 8, 5, 9]
-
假设给定无序序列结构如下
-
此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点
arr.length/2-1=5/2-1=1
,也就是下面的 6 结点),从左至右,从下至上进行调整。
3.找到第二个非叶节点 4,由于[4,9,8]中 9 元素最大,4 和 9 交换。
4.这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中 6 最大,交换 4 和 6。
此时,我们就将一个无序序列构造成了一个大顶堆.
- 步骤二 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换得到第二大元素。如此反复进行交换、重建、交换
1.将堆顶元素 9 和末尾元素 4 进行交换
2.重新调整结构,使其继续满足堆定义
3.再将堆顶元素 8 与末尾元素 5 进行交换,得到第二大元素 8
4.后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序
再简单总结下堆排序的基本思路:
1).将无序序列构建成一个堆,根据升序降序需求选择大根堆或小根堆;
2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序
动态演示
1.3、堆排序代码实现
堆排序的理解还是比较困难的,尤其是代码实现过程,下面提供两种代码实现,大家可以选择适合自己的实现方法来理解堆排序
代码实现(一)
import java.util.Arrays; public class HeapSort { public static void main(String[] args) { //升序--->大顶堆 long startTime=System.currentTimeMillis(); int arr[] = {5,3,7,1,4,6,2}; heapSort(arr); long endTime=System.currentTimeMillis(); System.out.println("程序运行时间: "+(endTime-startTime)+"ms"); } //编写一个堆排序的方法 public static void heapSort(int arr[]) { int temp = 0; //完成我们最终代码 //将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆 for(int i = arr.length / 2 -1; i >=0; i--) { adjustHeap(arr, i, arr.length); } /* * 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端; 3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。 */ for(int j = arr.length-1;j >0; j--) { //交换 temp = arr[j]; arr[j] = arr[0]; arr[0] = temp; adjustHeap(arr, 0, j); } System.out.println("数组=" + Arrays.toString(arr)); } //将一个数组(二叉树), 调整成一个大顶堆 /** * 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆 * 举例 int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6} * 如果我们再次调用 adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4} * @param arr 待调整的数组 * @param i 表示非叶子结点在数组中索引 * @param length 表示对多少个元素继续调整, length 是在逐渐的减少 */ public static void adjustHeap(int arr[], int i, int length) { int temp = arr[i];//先取出当前元素的值,保存在临时变量 //开始调整 //说明 //1. k = i * 2 + 1 k 是 i结点的左子结点 for(int k = i * 2 + 1; k < length; k = k * 2 + 1) { if(k+1 < length && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值 k++; // k 指向右子结点 } if(arr[k] > temp) { //如果子结点大于父结点 arr[i] = arr[k]; //把较大的值赋给当前结点 i = k; //!!! i 指向 k,继续循环比较 } else { break;//! } } //当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部) arr[i] = temp;//将temp值放到调整后的位置 } }
结果:
代码实现(二)
//交换数组中的元素 public static void swap(int[]num ,int i,int j) { int temp=num[i]; num[i]=num[j]; num[j]=temp; } //将待排序的数组构建成大根堆 public static void buildbigheap(int []num,int end) { //从最后一个非叶子节点开始构建,依照从下往上,从右往左的顺序 for(int i=end/2;i>=0;i--) { adjustnode(i, end, num); } } //调整该节点及其以下的所有节点 public static void adjustnode(int i,int end,int []num) { int left=2*i+1; int right=2*i+2; int big=i; //判断小分支那个是大元素 if(left<end&&num[i]<num[left]) i=left; if(right<end&&num[i]<num[right]) i=right; if(i!=big) { //交换顺序之后需要继续校验 swap(num, i, big); //重新校验,防止出现交换之后根节点小于孩子节点的情况 adjustnode(i, end, num); } } public static void main(String[] args) { int []num ={5,3,7,1,4,6,2}; long startTime=System.currentTimeMillis(); //第一次构建大根堆 buildbigheap(num, num.length); for(int j=num.length-1;j>0;j--) { System.out.print("第"+(num.length-j)+"次排序前: "); for(int k=0;k<num.length;k++) { System.out.print(num[k]+" "); } //交换队头已经排序得到的最大元素与队尾元素 swap(num, 0, j); System.out.print("第"+(num.length-j)+"次排序后: "); for(int k=0;k<num.length;k++) { System.out.print(num[k]+" "); } System.out.println(); //交换结束之后,大根堆已经被破坏,需要开始重新构建大根堆 buildbigheap(num,j); } long endTime=System.currentTimeMillis(); System.out.println("程序运行时间: "+(endTime-startTime)+"ms"); }
结果:
2、赫夫曼树
2.1、简介
1、给定 n 个权值作为 n 个叶子结点,构造一棵二叉树, 若该树的带权路径长度(wpl) 达到最小,称这样的二叉树为
最优二叉树,也称为哈夫曼树(Huffman Tree), 还有的书翻译为霍夫曼树。
2、赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近
重要概念和举例说明
- 路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通中分支的数目称为路径长度。若规定根结点的层数为 1,则从根结点到第 L 层结点的路径长度为 L-1
- 结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。 结
点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积 - 树的带权路径长度:树的带权路径长度规定为 所有叶子结点的带权路径长度之和,记为
WPL(weighted path length)
,权值越大的结点离根结点越近的二叉树才是最优二叉树。 - WPL 最小的就是赫夫曼树
2.2、赫夫曼树创建思路图解
给出一个数列 {13, 7, 8, 3, 29, 6, 1}
,要求转成一颗赫夫曼树
构成赫夫曼树的步骤:
- 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
- 取出根节点权值最小的两颗二叉树
- 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
- 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数
据都被处理,就得到一颗赫夫曼树
图解:
(1)选出最小的两个数组成二叉树
(2)接下来在4,6,7,8...
中选择最小的两个4,6
(注意这里要加入第一步组成的节点4
,大的在右边,小的在左边)
(3)重复上述步骤
2.3、赫夫曼树代码实现
public class HuffmanTree { public static void main(String[] args) { int arr[] = { 13, 7, 8, 3, 29, 6, 1 }; Node root = createHuffmanTree(arr); preOrder(root); //67,29,38,15,7,8,23,10,4,1,3,6,13 } //编写一个前序遍历的方法 public static void preOrder(Node root) { if(root != null) { root.preOrder(); }else{ System.out.println("是空树,不能遍历~~"); } } // 创建赫夫曼树的方法 /** * * @param arr 需要创建成哈夫曼树的数组 * @return 创建好后的赫夫曼树的root结点 */ public static Node createHuffmanTree(int[] arr) { // 第一步为了操作方便 // 1. 遍历 arr 数组 // 2. 将arr的每个元素构成成一个Node // 3. 将Node 放入到ArrayList中 List<Node> nodes = new ArrayList<Node>(); for (int value : arr) { nodes.add(new Node(value)); } //我们处理的过程是一个循环的过程 while(nodes.size() > 1) { //排序 从小到大 Collections.sort(nodes); System.out.println("nodes =" + nodes); //取出根节点权值最小的两颗二叉树 //(1) 取出权值最小的结点(二叉树) Node leftNode = nodes.get(0); //(2) 取出权值第二小的结点(二叉树) Node rightNode = nodes.get(1); //(3)构建一颗新的二叉树 Node parent = new Node(leftNode.value + rightNode.value); parent.left = leftNode; parent.right = rightNode; //(4)从ArrayList删除处理过的二叉树 nodes.remove(leftNode); nodes.remove(rightNode); //(5)将parent加入到nodes nodes.add(parent); } //返回哈夫曼树的root结点 return nodes.get(0); } } // 创建结点类 // 为了让Node 对象持续排序Collections集合排序 // 让Node 实现Comparable接口 class Node implements Comparable<Node> { int value; // 结点权值 char c; //字符 Node left; // 指向左子结点 Node right; // 指向右子结点 //写一个前序遍历 public void preOrder() { System.out.println(this); if (this.left != null) { this.left.preOrder(); } if (this.right != null) { this.right.preOrder(); } } public Node(int value) { this.value = value; } @Override public String toString() { return "Node [value=" + value + "]"; } @Override public int compareTo(Node o) { // TODO Auto-generated method stub // 表示从小到大排序 return this.value - o.value; } }
结果:
3、赫夫曼编码
3.1、简介
- 赫夫曼编码也翻译为 哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式, 属于一种程序算法
- 赫夫曼编码是赫哈夫曼树在电讯通信中的经典的应用之一。
- 赫夫曼编码广泛地用于数据文件压缩。其压缩率通常在 20%~90%之间
- 赫夫曼码是可变字长编码(VLC)的一种。Huffman 于 1952 年提出一种编码方法,称之为最佳编码
3.2、原理剖析
- 通信领域中信息的处理方式 1-定长编码
- 通信领域中信息的处理方式 2-变长编码
- 通信领域中信息的处理方式 3-赫夫曼编码
1、传输的 字符串i like like like java do you like a java
2、d:1 y:1 u:1 j:2 v:2 o:2 l:4 k:4 e:4 i:5 a:5 :9 // 各个字符对应的个数
3、按照上面字符出现的次数构建一颗赫夫曼树, 次数作为权值
构成赫夫曼树的步骤:
- 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
- 取出根节点权值最小的两颗二叉树
- 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
- 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,
就得到一颗赫夫曼树
4、根据赫夫曼树,给各个字符,规定编码 (前缀编码), 向左的路径为 0 向右的路径为 1 , 编码如下:
o: 1000
u: 10010
d: 100110
y: 100111
i: 101
a : 110
k: 1110
e: 1111
j: 0000
v: 0001
l: 001
: 01
(空格)
5、按照上面的赫夫曼编码,我们的"i like like like java do you like a java"
字符串对应的编码为 (注意这里我们使用的无损压缩)
1010100110111101111010011011110111101001101111011110100001100001110011001111000011001111000100100100110111101111011100100001100001110
通过赫夫曼编码处理 长度为 133,且不会有多义性
6、长度为 : 133
说明:原来长度是359
, 压缩了 (359-133) / 359 = 62.9%
此编码满足前缀编码, 即字符的编码都不能是其他字符编码的前缀。不会造成匹配的多义性
赫夫曼编码是无损处理方案(可以完全恢复)
注:这个赫夫曼树根据 排序方法不同,也可能不太一样,这样对应的 赫夫曼编码也不完全一样,但是 wpl 是
一样的,都是最小的, 最后生成的赫夫曼编码的长度是一样,比如: 如果我们让每次生成的新的二叉树总是排在权
值相同的二叉树的最后一个,则生成的二叉树如下图,但是编码长度是不会变的,还是133
3.3、创建赫夫曼树(数据压缩)
将给出的一段文本,比如"i like like like java do you like a java"
, 根据前面的讲的赫夫曼编码原理,对其进行数
据 压 缩 处 理 , 形 式 如
"1010100110111101111010011011110111101001101111011110100001100001110011001111000011001111000100100100 110111101111011100100001100001110"
功能: 根据赫夫曼编码压缩数据的原理,需要创建 "i like like like java do you like a java"
对应的赫夫曼树
思路:
(1) Node { data (存放数据), weight (权值), left 和 right }
(2) 得到 "i like like like java do you like a java"
对应的 byte[] 数组
(3) 编写一个方法,将准备构建赫夫曼树的Node 节点放到 List , 形式 [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......], 体现 d:1 y:1 u:1 j:2 v:2 o:2 l:4 k:4 e:4 i:5 a:5 :9
(4) 可以通过List 创建对应的赫夫曼树
代码实现
import java.util.*; public class HuffmanCode { public static void main(String[] args) { String content = "i like like like java do you like a java"; byte[] contentBytes = content.getBytes(); System.out.println(contentBytes.length);//40 List<Node> nodes = getNodes(contentBytes); System.out.println("nodes="+nodes); //测试创建的二叉树 System.out.println("创建赫夫曼树:"); Node huffmanTreeRoot = createHuffmanTree(nodes); System.out.println("前序遍历:"); huffmanTreeRoot.preOrder(); } //前序遍历的方法 public static void preOrder(Node root){ if (root != null){ root.preOrder(); }else { System.out.println("赫夫曼树为空"); } } /** * * @param bytes 接收字节数组 * @return 返回的就是 List 形式 [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......], */ private static List<Node> getNodes(byte[] bytes){ //1.创建一个ArrayList ArrayList<Node> nodes = new ArrayList<>(); //遍历bytes,存储每一个byte出现的次数=》map[key,value] HashMap<Byte,Integer> counts = new HashMap<>(); for (byte b: bytes) { Integer count = counts.get(b); if (count == null){//Map还没有这个数据 counts.put(b,1); }else { counts.put(b,count+1); } } //把每个键值对转成一个Node对象,并加入到nodes集合 //遍历map for (Map.Entry<Byte,Integer> entry : counts.entrySet()){ nodes.add(new Node(entry.getKey(), entry.getValue())); } return nodes; } //通过list创建应的赫夫曼树 private static Node createHuffmanTree(List<Node> nodes){ while (nodes.size() > 1){ //排序,从小到大 Collections.sort(nodes); //取出第一棵最小的二叉树左节点 Node leftNode = nodes.get(0); //取出第二棵最小的二叉树右节点 Node rightNode = nodes.get(1); //创建一棵新的二叉树,它的根节点没有data,只有权值 Node parent = new Node(null, leftNode.weight+ rightNode.weight); parent.left = leftNode; parent.right = rightNode; //将已经处理的两棵二叉树从nodes删除 nodes.remove(leftNode); nodes.remove(rightNode); //将新的二叉树加入到nodes nodes.add(parent); } //nodes 最后的节点就是赫夫曼树的根节点 return nodes.get(0); } } //创建Node,带数据和权值 class Node implements Comparable<Node>{ Byte data;//存放数据本身 a===>97 ascii码 int weight;//权值,表示字符出现的次数 Node left; Node right; public Node(Byte data, int weight) { this.data = data; this.weight = weight; } @Override public int compareTo(Node o) { //从小到大排序 return this.weight-o.weight; } public String toString() { return "Node [data = " + data + " weight=" + weight + "]"; } //前序遍历 public void preOrder() { System.out.println(this); if(this.left != null) { this.left.preOrder(); } if(this.right != null) { this.right.preOrder(); } } }
结果:(创建出赫夫曼树前序遍历)
3.4、生成赫夫曼编码和赫夫曼编码后的数据(数据压缩)
我们已经生成了 赫夫曼树, 下面我们继续完成任务
- 生成赫夫曼树对应的赫夫曼编码 , 如下表:
=01 a=100 d=11000 u=11001 e=1110 v=11011 i=101 y=11010 j=0010 k=1111 l=000 o=0011
- 使用赫夫曼编码来生成赫夫曼编码数据 ,即按照上面的赫夫曼编码,将"i like like like java do you like a java"
字符串生成对应的编码数据, 形式如下.
10101000101111111100100010111111110010001011111111001001010011011100011100000110111010001111001010 00101111111100110001001010011011100
1、生成赫夫曼树对应的赫夫曼编码
代码实现
//测试是否生成了对应的赫夫曼编码 Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot); System.out.println("生成的对应的赫夫曼编码="+ HuffmanCode.huffmanCodes); //... //生成赫夫曼树对应的赫夫曼编码 //思路: //1. 将赫夫曼编码表存放在 Map<Byte,String> 形式 // 生成的赫夫曼编码表{32(空格)=01, 97(a)=100, 100(...)=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011} static Map<Byte, String> huffmanCodes = new HashMap<Byte,String>(); //2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径 static StringBuilder stringBuilder = new StringBuilder(); //为了调用方便,我们重载 getCodes private static Map<Byte, String> getCodes(Node root) { if(root == null) { return null; } //处理root的左子树 getCodes(root.left, "0", stringBuilder); //处理root的右子树 getCodes(root.right, "1", stringBuilder); return huffmanCodes; } /** * 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合 * @param node 传入结点 * @param code 路径: 左子结点是 0, 右子结点 1 * @param stringBuilder 用于拼接路径 */ private static void getCodes(Node node,String code,StringBuilder stringBuilder){ StringBuilder stringBuilder2 = new StringBuilder(stringBuilder); //将code加入到 stringBuilder2 (拼接路径) stringBuilder2.append(code); if (node != null){//如果node等于空,不处理 //判断当前node是叶子节点还是非叶子结点 if (node.data == null){//非叶子节点 //递归处理 //向左递归 getCodes(node.left, "0", stringBuilder2); //向右递归 getCodes(node.right, "1", stringBuilder2); }else {//进入到这里说明是叶子节点,找到了最后 huffmanCodes.put(node.data,stringBuilder2.toString()); } } }
结果:
2、使用赫夫曼编码来生成赫夫曼编码数据
代码实现
//测试返回byte数组 byte[] huffmanCodeBytes = zip(contentBytes, huffmanCodes); System.out.println("huffmanCodeBytes="+Arrays.toString(huffmanCodeBytes));//17 //... //编写一个方法,将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[] /** * * @param bytes 这是原始的字符串对应的 byte[] * @param huffmanCodes 生成的赫夫曼编码map * @return 返回赫夫曼编码处理后的 byte[] * 举例: String content = "i like like like java do you like a java"; =》 byte[] contentBytes = content.getBytes(); * 返回的是 字符串 "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100" * => 对应的 byte[] huffmanCodeBytes ,即 8位对应一个 byte,放入到 huffmanCodeBytes * huffmanCodeBytes[0] = 10101000(补码) => byte [推导 10101000=> 10101000 - 1 => 10100111(反码)=> 11011000(原码)= -88 ] * huffmanCodeBytes[1] = -88 */ private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) { //1.利用 huffmanCodes 将 bytes 转成 赫夫曼编码对应的字符串 StringBuilder stringBuilder = new StringBuilder(); //遍历bytes 数组 for(byte b: bytes) { stringBuilder.append(huffmanCodes.get(b)); } //System.out.println("测试 stringBuilder~~~=" + stringBuilder.toString()); //将 "1010100010111111110..." 转成 byte[] //统计返回 byte[] huffmanCodeBytes 长度 //一句话 int len = (stringBuilder.length() + 7) / 8; int len; if(stringBuilder.length() % 8 == 0) { len = stringBuilder.length() / 8; } else { len = stringBuilder.length() / 8 + 1; } //创建 存储压缩后的 byte数组 byte[] huffmanCodeBytes = new byte[len]; int index = 0;//记录是第几个byte for (int i = 0; i < stringBuilder.length(); i += 8) { //因为是每8位对应一个byte,所以步长 +8 String strByte; if(i+8 > stringBuilder.length()) {//不够8位 strByte = stringBuilder.substring(i); }else{ strByte = stringBuilder.substring(i, i + 8); } //将strByte 转成一个byte,放入到 huffmanCodeBytes huffmanCodeBytes[index] = (byte)Integer.parseInt(strByte, 2); index++; } return huffmanCodeBytes; }
3.5、数据压缩小结
将3.3与3.4中编写的所有方法封装成一个方法
//使用一个方法,将前面的方法封装起来,便于我们的调用 /** * @param bytes 原始的字符串对应的字节数组 * @return 是经过 赫夫曼编码处理后的字节数组(压缩后的数组) */ private static byte[] huffmanZip(byte[] bytes){ List<Node> nodes = getNodes(bytes); //根据nodes创建的赫夫曼树 Node huffmanTreeRoot = createHuffmanTree(nodes); //生成对应的赫夫曼编码(根据赫夫曼树) Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot); //根据生成的赫夫曼编码来对原始的字节数组进行压缩 byte[] huffmanCodeBytes = zip(bytes, huffmanCodes); return huffmanCodeBytes; }
数据压缩的所有代码
import java.util.*; public class HuffmanCode { public static void main(String[] args) { String content = "i like like like java do you like a java"; byte[] contentBytes = content.getBytes(); System.out.println("原始的content字符串长度为:"+contentBytes.length);//40 byte[] huffmanCodesBytes = huffmanZip(contentBytes); System.out.println("对content字符串压缩后的结果是:"+Arrays.toString(huffmanCodesBytes)); System.out.println("长度为:"+huffmanCodesBytes.length);//17 } //使用一个方法,将前面的方法封装起来,便于我们的调用 /** * @param bytes 原始的字符串对应的字节数组 * @return 是经过 赫夫曼编码处理后的字节数组(压缩后的数组) */ private static byte[] huffmanZip(byte[] bytes){ List<Node> nodes = getNodes(bytes); //根据nodes创建的赫夫曼树 Node huffmanTreeRoot = createHuffmanTree(nodes); //生成对应的赫夫曼编码(根据赫夫曼树) Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot); //根据生成的赫夫曼编码来对原始的字节数组进行压缩 byte[] huffmanCodeBytes = zip(bytes, huffmanCodes); return huffmanCodeBytes; } //编写一个方法,将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[] /** * * @param bytes 这是原始的字符串对应的 byte[] * @param huffmanCodes 生成的赫夫曼编码map * @return 返回赫夫曼编码处理后的 byte[] * 举例: String content = "i like like like java do you like a java"; =》 byte[] contentBytes = content.getBytes(); * 返回的是 字符串 "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100" * => 对应的 byte[] huffmanCodeBytes ,即 8位对应一个 byte,放入到 huffmanCodeBytes * huffmanCodeBytes[0] = 10101000(补码) => byte [推导 10101000=> 10101000 - 1 => 10100111(反码)=> 11011000(原码)= -88 ] * huffmanCodeBytes[1] = -88 */ private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) { //1.利用 huffmanCodes 将 bytes 转成 赫夫曼编码对应的字符串 StringBuilder stringBuilder = new StringBuilder(); //遍历bytes 数组 for(byte b: bytes) { stringBuilder.append(huffmanCodes.get(b)); } //System.out.println("测试 stringBuilder~~~=" + stringBuilder.toString()); //将 "1010100010111111110..." 转成 byte[] //统计返回 byte[] huffmanCodeBytes 长度 //一句话 int len = (stringBuilder.length() + 7) / 8; int len; if(stringBuilder.length() % 8 == 0) { len = stringBuilder.length() / 8; } else { len = stringBuilder.length() / 8 + 1; } //创建 存储压缩后的 byte数组 byte[] huffmanCodeBytes = new byte[len]; int index = 0;//记录是第几个byte for (int i = 0; i < stringBuilder.length(); i += 8) { //因为是每8位对应一个byte,所以步长 +8 String strByte; if(i+8 > stringBuilder.length()) {//不够8位 strByte = stringBuilder.substring(i); }else{ strByte = stringBuilder.substring(i, i + 8); } //将strByte 转成一个byte,放入到 huffmanCodeBytes huffmanCodeBytes[index] = (byte)Integer.parseInt(strByte, 2); index++; } return huffmanCodeBytes; } //生成赫夫曼树对应的赫夫曼编码 //思路: //1. 将赫夫曼编码表存放在 Map<Byte,String> 形式 // 生成的赫夫曼编码表{32(空格)=01, 97(a)=100, 100(...)=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011} static Map<Byte, String> huffmanCodes = new HashMap<Byte,String>(); //2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径 static StringBuilder stringBuilder = new StringBuilder(); //为了调用方便,我们重载 getCodes private static Map<Byte, String> getCodes(Node root) { if(root == null) { return null; } //处理root的左子树 getCodes(root.left, "0", stringBuilder); //处理root的右子树 getCodes(root.right, "1", stringBuilder); return huffmanCodes; } /** * 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合 * @param node 传入结点 * @param code 路径: 左子结点是 0, 右子结点 1 * @param stringBuilder 用于拼接路径 */ private static void getCodes(Node node,String code,StringBuilder stringBuilder){ StringBuilder stringBuilder2 = new StringBuilder(stringBuilder); //将code加入到 stringBuilder2 (拼接路径) stringBuilder2.append(code); if (node != null){//如果node等于空,不处理 //判断当前node是叶子节点还是非叶子结点 if (node.data == null){//非叶子节点 //递归处理 //向左递归 getCodes(node.left, "0", stringBuilder2); //向右递归 getCodes(node.right, "1", stringBuilder2); }else {//进入到这里说明是叶子节点,找到了最后 huffmanCodes.put(node.data,stringBuilder2.toString()); } } } //前序遍历的方法 public static void preOrder(Node root){ if (root != null){ root.preOrder(); }else { System.out.println("赫夫曼树为空"); } } /** * * @param bytes 接收字节数组 * @return 返回的就是 List 形式 [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......], */ private static List<Node> getNodes(byte[] bytes){ //1.创建一个ArrayList ArrayList<Node> nodes = new ArrayList<>(); //遍历bytes,存储每一个byte出现的次数=》map[key,value] HashMap<Byte,Integer> counts = new HashMap<>(); for (byte b: bytes) { Integer count = counts.get(b); if (count == null){//Map还没有这个数据 counts.put(b,1); }else { counts.put(b,count+1); } } //把每个键值对转成一个Node对象,并加入到nodes集合 //遍历map for (Map.Entry<Byte,Integer> entry : counts.entrySet()){ nodes.add(new Node(entry.getKey(), entry.getValue())); } return nodes; } //通过list创建应的赫夫曼树 private static Node createHuffmanTree(List<Node> nodes){ while (nodes.size() > 1){ //排序,从小到大 Collections.sort(nodes); //取出第一棵最小的二叉树左节点 Node leftNode = nodes.get(0); //取出第二棵最小的二叉树右节点 Node rightNode = nodes.get(1); //创建一棵新的二叉树,它的根节点没有data,只有权值 Node parent = new Node(null, leftNode.weight+ rightNode.weight); parent.left = leftNode; parent.right = rightNode; //将已经处理的两棵二叉树从nodes删除 nodes.remove(leftNode); nodes.remove(rightNode); //将新的二叉树加入到nodes nodes.add(parent); } //nodes 最后的节点就是赫夫曼树的根节点 return nodes.get(0); } } //创建Node,带数据和权值 class Node implements Comparable<Node>{ Byte data;//存放数据本身 a===>97 ascii码 int weight;//权值,表示字符出现的次数 Node left; Node right; public Node(Byte data, int weight) { this.data = data; this.weight = weight; } @Override public int compareTo(Node o) { //从小到大排序 return this.weight-o.weight; } public String toString() { return "Node [data = " + data + " weight=" + weight + "]"; } //前序遍历 public void preOrder() { System.out.println(this); if(this.left != null) { this.left.preOrder(); } if(this.right != null) { this.right.preOrder(); } } }
数据压缩的结果:
压缩率:(40-17)/40=57.5%
3.6、使用赫夫曼编码解码(数据解压)
使用赫夫曼编码来解码数据,具体要求是
- 前面我们得到了赫夫曼编码和对应的编码
byte[] , 即:[-88, -65, -56, -65, -56, -65, -55, 77, -57, 6, -24, -14, -117, -4, -60, -90, 28]
- 现在要求使用赫夫曼编码, 进行解码,又
重新得到原来的字符串"i like like like java do you like a java"
在数据解压的过程中我们需要两个方法,一个是将压缩后的结果转为二进制的字符串,一个是对压缩数据进行解码
/** * 将一个byte 转成一个二进制的字符串, 这里需要利用二进制的原码,反码,补码 * @param b 传入的 byte * @param flag 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位 * @return 是该b 对应的二进制的字符串,(注意是按补码返回) */ private static String byteToBitString(boolean flag, byte b) { //使用变量保存 b int temp = b; //将 b 转成 int //如果是正数我们还存在补高位 if(flag) { temp |= 256; //按位与 256 1 0000 0000 | 0000 0001 => 1 0000 0001 } String str = Integer.toBinaryString(temp); //返回的是temp对应的二进制的补码 if(flag) { return str.substring(str.length() - 8); } else { return str; } } //编写一个方法,完成对压缩数据的解码 /** * * @param huffmanCodes 赫夫曼编码表 map(key = value) * @param huffmanBytes 赫夫曼编码得到的字节数组 * @return 就是原来的字符串对应的数组 */ private static byte[] decode(Map<Byte,String> huffmanCodes, byte[] huffmanBytes) { //1. 先得到 huffmanBytes 对应的 二进制的字符串 , 形式 1010100010111... StringBuilder stringBuilder = new StringBuilder(); //将byte数组转成二进制的字符串 for(int i = 0; i < huffmanBytes.length; i++) { byte b = huffmanBytes[i]; //判断是不是最后一个字节 boolean flag = (i == huffmanBytes.length - 1); stringBuilder.append(byteToBitString(!flag, b)); } //把字符串按照指定的赫夫曼编码进行解码 //把赫夫曼编码表进行调换,因为反向查询 a->100 100->a Map<String, Byte> map = new HashMap<String,Byte>(); for(Map.Entry<Byte, String> entry: huffmanCodes.entrySet()) { map.put(entry.getValue(), entry.getKey()); //key = value 变成 value = key } //创建要给集合,存放byte List<Byte> list = new ArrayList<>(); //i 可以理解成就是索引,扫描 stringBuilder for(int i = 0; i < stringBuilder.length(); ) { int count = 1; // 小的计数器 boolean flag = true; Byte b = null; while(flag) { //1010100010111... //递增的取出 key 1 (1,10,101...匹配) String key = stringBuilder.substring(i, i+count);//i 不动,让count移动,指定匹配到一个字符 b = map.get(key); if(b == null) {//说明没有匹配到 count++; }else { //匹配到 flag = false; } } list.add(b); i += count;//i 直接移动到 count } //当for循环结束后,我们list中就存放了所有的字符 "i like like like java do you like a java" //把list 中的数据放入到byte[] 并返回 byte b[] = new byte[list.size()]; for(int i = 0;i < b.length; i++) { b[i] = list.get(i); } return b; }
测试
//解压 byte[] sourceBytes = decode(huffmanCodes, huffmanCodesBytes); System.out.println("(解压后)原来的字符串="+new String(sourceBytes));
3.6、文件压缩
我们学习了通过赫夫曼编码对一个字符串进行编码和解码, 下面我们来完成对文件的压缩和解压, 具体要求:
给你一个图片文件,要求对其进行无损压缩, 看看压缩效果如何
思路:读取文件-> 得到赫夫曼编码表 -> 完成压缩
首先我们创建一个图片文件
压缩代码
//编写方法,将一个文件进行压缩 /** * * @param srcFile 你传入的希望压缩的文件的全路径 * @param dstFile 我们压缩后将压缩文件放到哪个目录 */ public static void zipFile(String srcFile, String dstFile) { //创建输出流 OutputStream os = null; ObjectOutputStream oos = null; //创建文件的输入流 FileInputStream is = null; try { //创建文件的输入流 is = new FileInputStream(srcFile); //创建一个和源文件大小一样的byte[] byte[] b = new byte[is.available()]; //读取文件 is.read(b); //直接对源文件压缩 byte[] huffmanBytes = huffmanZip(b); //创建文件的输出流, 存放压缩文件 os = new FileOutputStream(dstFile); //创建一个和文件输出流关联的ObjectOutputStream oos = new ObjectOutputStream(os); //把 赫夫曼编码后的字节数组写入压缩文件 oos.writeObject(huffmanBytes); //这里我们以对象流的方式写入 赫夫曼编码,是为了以后我们恢复源文件时使用 //注意一定要把赫夫曼编码 写入压缩文件 oos.writeObject(huffmanCodes); }catch (Exception e) { System.out.println(e.getMessage()); }finally { try { is.close(); oos.close(); os.close(); }catch (Exception e) { System.out.println(e.getMessage()); } } }
测试代码
//测试压缩文件 String srcFile = "E:\数据结构与算法学习\myself\owncode\resources\3.jpg"; String dstFile ="E:\数据结构与算法学习\myself\owncode\resources\3.zip"; zipFile(srcFile,dstFile); System.out.println("压缩文件成功");
结果
3.7、文件解压
具体要求:将前面压缩的文件,重新恢复成原来的文件。
思路:读取压缩文件(数据和赫夫曼编码表)-> 完成解压(文件恢复)
文件解压代码
//编写一个方法,完成对压缩文件的解压 /** * * @param zipFile 准备解压的文件 * @param dstFile 将文件解压到哪个路径 */ public static void unZipFile(String zipFile, String dstFile) { //定义文件输入流 InputStream is = null; //定义一个对象输入流 ObjectInputStream ois = null; //定义文件的输出流 OutputStream os = null; try { //创建文件输入流 is = new FileInputStream(zipFile); //创建一个和 is关联的对象输入流 ois = new ObjectInputStream(is); //读取byte数组 huffmanBytes byte[] huffmanBytes = (byte[])ois.readObject(); //读取赫夫曼编码表 Map<Byte,String> huffmanCodes = (Map<Byte,String>)ois.readObject(); //解码 byte[] bytes = decode(huffmanCodes, huffmanBytes); //将bytes 数组写入到目标文件 os = new FileOutputStream(dstFile); //写数据到 dstFile 文件 os.write(bytes); } catch (Exception e) { System.out.println(e.getMessage()); } finally { try { os.close(); ois.close(); is.close(); } catch (Exception e2) { System.out.println(e2.getMessage()); } } }
测试代码
//测试解压文件 String zipFile = "E:\数据结构与算法学习\myself\owncode\resources\3.zip"; String dstFile = "E:\数据结构与算法学习\myself\owncode\resources\32.jpg"; unZipFile(zipFile,dstFile); System.out.println("解压成功");
结果
我们取文件夹中查看发现原始的图片和解压后的文件大小一样---->无损压缩
3.8、代码汇总
我们将赫夫曼编码所有的代码进行汇总
package com.qjd.huffmancode; import java.io.*; import java.util.*; public class HuffmanCode { public static void main(String[] args) { /* String content = "i like like like java do you like a java"; byte[] contentBytes = content.getBytes(); System.out.println("原始的content字符串长度为:"+contentBytes.length);//40 //压缩 byte[] huffmanCodesBytes = huffmanZip(contentBytes); System.out.println("对content字符串压缩后的结果是:"+Arrays.toString(huffmanCodesBytes)+"长度为:"+huffmanCodesBytes.length); //解压 byte[] sourceBytes = decode(huffmanCodes, huffmanCodesBytes); System.out.println("(解压后)原来的字符串="+new String(sourceBytes)+"长度为:"+new String(sourceBytes).length()); */ //测试压缩文件 // String srcFile = "E:\数据结构与算法学习\myself\owncode\resources\3.jpg"; // String dstFile ="E:\数据结构与算法学习\myself\owncode\resources\3.zip"; // zipFile(srcFile,dstFile); // System.out.println("压缩文件成功"); //测试解压文件 String zipFile = "E:\数据结构与算法学习\myself\owncode\resources\3.zip"; String dstFile = "E:\数据结构与算法学习\myself\owncode\resources\32.jpg"; unZipFile(zipFile,dstFile); System.out.println("解压成功"); } //编写一个方法,完成对压缩文件的解压 /** * * @param zipFile 准备解压的文件 * @param dstFile 将文件解压到哪个路径 */ public static void unZipFile(String zipFile, String dstFile) { //定义文件输入流 InputStream is = null; //定义一个对象输入流 ObjectInputStream ois = null; //定义文件的输出流 OutputStream os = null; try { //创建文件输入流 is = new FileInputStream(zipFile); //创建一个和 is关联的对象输入流 ois = new ObjectInputStream(is); //读取byte数组 huffmanBytes byte[] huffmanBytes = (byte[])ois.readObject(); //读取赫夫曼编码表 Map<Byte,String> huffmanCodes = (Map<Byte,String>)ois.readObject(); //解码 byte[] bytes = decode(huffmanCodes, huffmanBytes); //将bytes 数组写入到目标文件 os = new FileOutputStream(dstFile); //写数据到 dstFile 文件 os.write(bytes); } catch (Exception e) { System.out.println(e.getMessage()); } finally { try { os.close(); ois.close(); is.close(); } catch (Exception e2) { System.out.println(e2.getMessage()); } } } //编写方法,将一个文件进行压缩 /** * * @param srcFile 你传入的希望压缩的文件的全路径 * @param dstFile 我们压缩后将压缩文件放到哪个目录 */ public static void zipFile(String srcFile, String dstFile) { //创建输出流 OutputStream os = null; ObjectOutputStream oos = null; //创建文件的输入流 FileInputStream is = null; try { //创建文件的输入流 is = new FileInputStream(srcFile); //创建一个和源文件大小一样的byte[] byte[] b = new byte[is.available()]; //读取文件 is.read(b); //直接对源文件压缩 byte[] huffmanBytes = huffmanZip(b); //创建文件的输出流, 存放压缩文件 os = new FileOutputStream(dstFile); //创建一个和文件输出流关联的ObjectOutputStream oos = new ObjectOutputStream(os); //把 赫夫曼编码后的字节数组写入压缩文件 oos.writeObject(huffmanBytes); //这里我们以对象流的方式写入 赫夫曼编码,是为了以后我们恢复源文件时使用 //注意一定要把赫夫曼编码 写入压缩文件 oos.writeObject(huffmanCodes); }catch (Exception e) { System.out.println(e.getMessage()); }finally { try { is.close(); oos.close(); os.close(); }catch (Exception e) { System.out.println(e.getMessage()); } } } //完成数据的解压 //思路 //1. 将huffmanCodeBytes [-88, -65, -56, -65, -56, -65, -55, 77, -57, 6, -24, -14, -117, -4, -60, -90, 28] // 重新先转成 赫夫曼编码对应的二进制的字符串 "1010100010111..." //2. 赫夫曼编码对应的二进制的字符串 "1010100010111..." =》 对照 赫夫曼编码 =》 "i like like like java do you like a java" /** * 将一个byte 转成一个二进制的字符串, 这里需要利用二进制的原码,反码,补码 * @param b 传入的 byte * @param flag 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位 * @return 是该b 对应的二进制的字符串,(注意是按补码返回) */ private static String byteToBitString(boolean flag, byte b) { //使用变量保存 b int temp = b; //将 b 转成 int //如果是正数我们还存在补高位 if(flag) { temp |= 256; //按位与 256 1 0000 0000 | 0000 0001 => 1 0000 0001 } String str = Integer.toBinaryString(temp); //返回的是temp对应的二进制的补码 if(flag) { return str.substring(str.length() - 8); } else { return str; } } //编写一个方法,完成对压缩数据的解码 /** * * @param huffmanCodes 赫夫曼编码表 map(key = value) * @param huffmanBytes 赫夫曼编码得到的字节数组 * @return 就是原来的字符串对应的数组 */ private static byte[] decode(Map<Byte,String> huffmanCodes, byte[] huffmanBytes) { //1. 先得到 huffmanBytes 对应的 二进制的字符串 , 形式 1010100010111... StringBuilder stringBuilder = new StringBuilder(); //将byte数组转成二进制的字符串 for(int i = 0; i < huffmanBytes.length; i++) { byte b = huffmanBytes[i]; //判断是不是最后一个字节 boolean flag = (i == huffmanBytes.length - 1); stringBuilder.append(byteToBitString(!flag, b)); } //把字符串按照指定的赫夫曼编码进行解码 //把赫夫曼编码表进行调换,因为反向查询 a->100 100->a Map<String, Byte> map = new HashMap<String,Byte>(); for(Map.Entry<Byte, String> entry: huffmanCodes.entrySet()) { map.put(entry.getValue(), entry.getKey()); //key = value 变成 value = key } //创建要给集合,存放byte List<Byte> list = new ArrayList<>(); //i 可以理解成就是索引,扫描 stringBuilder for(int i = 0; i < stringBuilder.length(); ) { int count = 1; // 小的计数器 boolean flag = true; Byte b = null; while(flag) { //1010100010111... //递增的取出 key 1 (1,10,101...匹配) String key = stringBuilder.substring(i, i+count);//i 不动,让count移动,指定匹配到一个字符 b = map.get(key); if(b == null) {//说明没有匹配到 count++; }else { //匹配到 flag = false; } } list.add(b); i += count;//i 直接移动到 count } //当for循环结束后,我们list中就存放了所有的字符 "i like like like java do you like a java" //把list 中的数据放入到byte[] 并返回 byte b[] = new byte[list.size()]; for(int i = 0;i < b.length; i++) { b[i] = list.get(i); } return b; } //使用一个方法,将前面的方法封装起来,便于我们的调用 /** * @param bytes 原始的字符串对应的字节数组 * @return 是经过 赫夫曼编码处理后的字节数组(压缩后的数组) */ private static byte[] huffmanZip(byte[] bytes){ List<Node> nodes = getNodes(bytes); //根据nodes创建的赫夫曼树 Node huffmanTreeRoot = createHuffmanTree(nodes); //生成对应的赫夫曼编码(根据赫夫曼树) Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot); //根据生成的赫夫曼编码来对原始的字节数组进行压缩 byte[] huffmanCodeBytes = zip(bytes, huffmanCodes); return huffmanCodeBytes; } //编写一个方法,将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[] /** * * @param bytes 这是原始的字符串对应的 byte[] * @param huffmanCodes 生成的赫夫曼编码map * @return 返回赫夫曼编码处理后的 byte[] * 举例: String content = "i like like like java do you like a java"; =》 byte[] contentBytes = content.getBytes(); * 返回的是 字符串 "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100" * => 对应的 byte[] huffmanCodeBytes ,即 8位对应一个 byte,放入到 huffmanCodeBytes * huffmanCodeBytes[0] = 10101000(补码) => byte [推导 10101000=> 10101000 - 1 => 10100111(反码)=> 11011000(原码)= -88 ] * huffmanCodeBytes[1] = -88 */ private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) { //1.利用 huffmanCodes 将 bytes 转成 赫夫曼编码对应的字符串 StringBuilder stringBuilder = new StringBuilder(); //遍历bytes 数组 for(byte b: bytes) { stringBuilder.append(huffmanCodes.get(b)); } //System.out.println("测试 stringBuilder~~~=" + stringBuilder.toString()); //将 "1010100010111111110..." 转成 byte[] //统计返回 byte[] huffmanCodeBytes 长度 //一句话 int len = (stringBuilder.length() + 7) / 8; int len; if(stringBuilder.length() % 8 == 0) { len = stringBuilder.length() / 8; } else { len = stringBuilder.length() / 8 + 1; } //创建 存储压缩后的 byte数组 byte[] huffmanCodeBytes = new byte[len]; int index = 0;//记录是第几个byte for (int i = 0; i < stringBuilder.length(); i += 8) { //因为是每8位对应一个byte,所以步长 +8 String strByte; if(i+8 > stringBuilder.length()) {//不够8位 strByte = stringBuilder.substring(i); }else{ strByte = stringBuilder.substring(i, i + 8); } //将strByte 转成一个byte,放入到 huffmanCodeBytes huffmanCodeBytes[index] = (byte)Integer.parseInt(strByte, 2); index++; } return huffmanCodeBytes; } //生成赫夫曼树对应的赫夫曼编码 //思路: //1. 将赫夫曼编码表存放在 Map<Byte,String> 形式 // 生成的赫夫曼编码表{32(空格)=01, 97(a)=100, 100(...)=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011} static Map<Byte, String> huffmanCodes = new HashMap<Byte,String>(); //2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径 static StringBuilder stringBuilder = new StringBuilder(); //为了调用方便,我们重载 getCodes private static Map<Byte, String> getCodes(Node root) { if(root == null) { return null; } //处理root的左子树 getCodes(root.left, "0", stringBuilder); //处理root的右子树 getCodes(root.right, "1", stringBuilder); return huffmanCodes; } /** * 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合 * @param node 传入结点 * @param code 路径: 左子结点是 0, 右子结点 1 * @param stringBuilder 用于拼接路径 */ private static void getCodes(Node node,String code,StringBuilder stringBuilder){ StringBuilder stringBuilder2 = new StringBuilder(stringBuilder); //将code加入到 stringBuilder2 (拼接路径) stringBuilder2.append(code); if (node != null){//如果node等于空,不处理 //判断当前node是叶子节点还是非叶子结点 if (node.data == null){//非叶子节点 //递归处理 //向左递归 getCodes(node.left, "0", stringBuilder2); //向右递归 getCodes(node.right, "1", stringBuilder2); }else {//进入到这里说明是叶子节点,找到了最后 huffmanCodes.put(node.data,stringBuilder2.toString()); } } } //前序遍历的方法 public static void preOrder(Node root){ if (root != null){ root.preOrder(); }else { System.out.println("赫夫曼树为空"); } } /** * * @param bytes 接收字节数组 * @return 返回的就是 List 形式 [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......], */ private static List<Node> getNodes(byte[] bytes){ //1.创建一个ArrayList ArrayList<Node> nodes = new ArrayList<>(); //遍历bytes,存储每一个byte出现的次数=》map[key,value] HashMap<Byte,Integer> counts = new HashMap<>(); for (byte b: bytes) { Integer count = counts.get(b); if (count == null){//Map还没有这个数据 counts.put(b,1); }else { counts.put(b,count+1); } } //把每个键值对转成一个Node对象,并加入到nodes集合 //遍历map for (Map.Entry<Byte,Integer> entry : counts.entrySet()){ nodes.add(new Node(entry.getKey(), entry.getValue())); } return nodes; } //通过list创建应的赫夫曼树 private static Node createHuffmanTree(List<Node> nodes){ while (nodes.size() > 1){ //排序,从小到大 Collections.sort(nodes); //取出第一棵最小的二叉树左节点 Node leftNode = nodes.get(0); //取出第二棵最小的二叉树右节点 Node rightNode = nodes.get(1); //创建一棵新的二叉树,它的根节点没有data,只有权值 Node parent = new Node(null, leftNode.weight+ rightNode.weight); parent.left = leftNode; parent.right = rightNode; //将已经处理的两棵二叉树从nodes删除 nodes.remove(leftNode); nodes.remove(rightNode); //将新的二叉树加入到nodes nodes.add(parent); } //nodes 最后的节点就是赫夫曼树的根节点 return nodes.get(0); } } //创建Node,带数据和权值 class Node implements Comparable<Node>{ Byte data;//存放数据本身 a===>97 ascii码 int weight;//权值,表示字符出现的次数 Node left; Node right; public Node(Byte data, int weight) { this.data = data; this.weight = weight; } @Override public int compareTo(Node o) { //从小到大排序 return this.weight-o.weight; } public String toString() { return "Node [data = " + data + " weight=" + weight + "]"; } //前序遍历 public void preOrder() { System.out.println(this); if(this.left != null) { this.left.preOrder(); } if(this.right != null) { this.right.preOrder(); } } }
3.9、赫夫曼编码压缩注意事项
- 如果文件本身就是经过压缩处理的,那么使用赫夫曼编码再压缩效率不会有明显变化, 比如视频,ppt 等等文件
[举例:压缩一个 .ppt] - 赫夫曼编码是按字节来处理的,因此可以处理所有的文件(二进制文件、文本文件) [举例压一个.xml 文件]
- 如果一个文件中的内容,重复的数据不多,压缩效果也不会很明显.
4、二叉排序树(BST)
4.1、实际需求
给出一个数列 (7, 3, 10, 12, 5, 1, 9),要求能够高效的完成对数据的查询和添加
解决方案:
1、使用数组
数组未排序, 优点:直接在数组尾添加,速度快。 缺点:查找速度慢.
数组排序,优点:可以使用二分查找,查找速度快,缺点:为了保证数组有序,在添加新数据时,找到插入位置后,后面的数据需整体移动,速度慢。
2、使用链式存储-链表
不管链表是否有序,查找速度都慢,添加数据速度比数组快,不需要数据整体移动。
3、使用二叉排序树
4.2、二叉排序树简介
二叉排序树:
BST: (Binary Sort(Search) Tree), 对于二叉排序树的 任何一个非叶子节点,要求 左子节点的值比当前节点的值小, 右子节点的值比当前节点的值大。
特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点
比如针对前面的数据 (7, 3, 10, 12, 5, 1, 9) ,对应的二叉排序树为:
4.3、二叉排序树的创建与遍历
一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如: 数组为 Array(7, 3, 10, 12, 5, 1, 9) , 创
建成对应的二叉排序树为 :
二叉排序树的创建与遍历代码
public class BinarySortTreeDemo { public static void main(String[] args) { int[] arr = {7,3,10,12,5,1,9}; BinarySortTree binarySortTree = new BinarySortTree(); //循环的添加节点到二叉排序树 for (int i = 0; i < arr.length; i++) { binarySortTree.add(new Node(arr[i])); } //中序遍历二叉排序树 System.out.println("中序遍历二叉排序树"); binarySortTree.infixOrder(); } } //创建二叉排序树 class BinarySortTree{ private Node root; //添加节点的方法 public void add(Node node){ if (root == null){ root = node;//如果root为空则直接让root指向node }else { root.add(node); } } //中序遍历 public void infixOrder(){ if (root != null){ root.infixOrder(); }else { System.out.println("二叉排序树为空,不能遍历"); } } } //创建Node节点 class Node{ int value; Node left; Node right; public Node(int value) { this.value = value; } //添加节点的方法 //递归的形式添加节点,需要满足二叉排序树的要求 public void add(Node node){ if (node == null){ return; } //判断传入的节点的值,和当前子树根节点的值的关系 if (node.value<this.value){ //如果当前节点左子节点为空,直接将node给左节点 if (this.left == null){ this.left = node; }else {//如果当前节点左子节点不为空,就递归的向左子树进行添加 this.left.add(node); } }else {//添加的节点的值大于当前节点的值 if (this.right == null){ this.right = node; }else { this.right.add(node); } } } //中序遍历的方法 public void infixOrder() { if(this.left != null) { this.left.infixOrder(); } System.out.println(this); if(this.right != null) { this.right.infixOrder(); } } @Override public String toString() { return "Node{" + "value=" + value + '}'; } }
结果:
4.4、二叉树的删除
二叉排序树的删除情况比较复杂,有下面三种情况需要考虑
-
点 删除叶子节点 (比如:2, 5, 9, 12)
-
删除点 只有一颗子树的节点 (比如:1)
-
删除 有两颗子树的节点. (比如:7, 3,10 )
思路分析
第一种情况:删除叶子节点 (比如:2, 5, 9, 12)
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到targetNode
的 父结点parent
(3) 确定 targetNode
是 parent
的左子结点 还是右子结点
(4) 根据前面的情况来对应删除
左子结点 parent.left = null
右子结点 parent.right = null;
第二种情况: 删除只有一颗子树的节点 比如1
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到targetNode
的 父结点parent
(3) 确定targetNode
的子结点是左子结点还是右子结点
(4) targetNode
是parent
的左子结点还是右子结点
(5) 如果targetNode
有左子结点
- 1 如果
targetNode
是parent
的左子结点
parent.left = targetNode.left;
5.2 如果targetNode
是 parent
的右子结点
parent.right = targetNode.left;
(6) 如果targetNode
有右子结点
6.1 如果 targetNode
是 parent
的左子结点
parent.left = targetNode.right;
6.2 如果 targetNode
是parent
的右子结点
parent.right = targetNode.right
第三种情况 : 删除有两颗子树的节点. (比如:7, 3,10 )
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到targetNode
的 父结点parent
(3) 从targetNode
的右子树找到最小的结点
(4) 用一个临时变量,将 最小结点的值保存 temp = 12
(5) 删除该最小结点
(6) targetNode.value = temp
代码实现
package com.qjd.binarysorttree; public class BinarySortTreeDemo { public static void main(String[] args) { int[] arr = {7,3,10,12,5,1,9,2}; BinarySortTree binarySortTree = new BinarySortTree(); //循环的添加节点到二叉排序树 for (int i = 0; i < arr.length; i++) { binarySortTree.add(new Node(arr[i])); } //中序遍历二叉排序树 System.out.println("中序遍历二叉排序树"); binarySortTree.infixOrder(); //测试删除节点 // binarySortTree.delNode(2); // binarySortTree.delNode(5); // binarySortTree.delNode(9); // binarySortTree.delNode(12); // binarySortTree.delNode(1); binarySortTree.delNode(10); System.out.println("删除节点后"); binarySortTree.infixOrder(); } } //创建二叉排序树 class BinarySortTree{ private Node root; //添加节点的方法 public void add(Node node){ if (root == null){ root = node;//如果root为空则直接让root指向node }else { root.add(node); } } //查找要删除的结点 public Node search(int value) { if(root == null) { return null; } else { return root.search(value); } } //查找父结点 public Node searchParent(int value) { if(root == null) { return null; } else { return root.searchParent(value); } } //编写方法: //1. 返回的 以node 为根结点的二叉排序树的最小结点的值 //2. 删除node 为根结点的二叉排序树的最小结点 /** * * @param node 传入的结点(当做二叉排序树的根结点) * @return 返回的 以node 为根结点的二叉排序树的最小结点的值 */ public int delRightTreeMin(Node node) { Node target = node; //!!!这里是向右子树查找,但是因为是二叉排序树所以最小值一定在左子树上 while(target.left != null) { target = target.left; } //这时 target就指向了最小结点 //删除最小结点 delNode(target.value); return target.value; } //删除结点 public void delNode(int value) { if(root == null) { return; }else { //1.需要先去找到要删除的结点 targetNode Node targetNode = search(value); //如果没有找到要删除的结点 if(targetNode == null) { return; } //如果我们发现当前这颗二叉排序树只有一个结点 if(root.left == null && root.right == null) { root = null; return; } //去找到targetNode的父结点 Node parent = searchParent(value); //如果要删除的结点是叶子结点 if(targetNode.left == null && targetNode.right == null) { //判断targetNode 是父结点的左子结点,还是右子结点 if(parent.left != null && parent.left.value == value) { //是左子结点 parent.left = null; } else if (parent.right != null && parent.right.value == value) {//是右子结点 parent.right = null; } } else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点 int minVal = delRightTreeMin(targetNode.right);//在右子树中查找最小值 targetNode.value = minVal; } else { // 删除只有一颗子树的结点 //如果要删除的结点有左子结点 if(targetNode.left != null) { if(parent != null) { //如果 targetNode 是 parent 的左子结点 if(parent.left.value == value) { parent.left = targetNode.left; } else { // targetNode 是 parent 的右子结点 parent.right = targetNode.left; } } else { root = targetNode.left; } } else { //如果要删除的结点有右子结点 if(parent != null) { //如果 targetNode 是 parent 的左子结点 if(parent.left.value == value) { parent.left = targetNode.right; } else { //如果 targetNode 是 parent 的右子结点 parent.right = targetNode.right; } } else { root = targetNode.right; } } } } } //中序遍历 public void infixOrder(){ if (root != null){ root.infixOrder(); }else { System.out.println("二叉排序树为空,不能遍历"); } } } //创建Node节点 class Node{ int value; Node left; Node right; public Node(int value) { this.value = value; } //查找要删除的节点 /** * * @param value 希望删除的结点的值 * @return 如果找到返回该结点,否则返回null */ public Node search(int value) { if(value == this.value) { //找到就是该结点 return this; } else if(value < this.value) {//如果查找的值小于当前结点,向左子树递归查找 //如果左子结点为空 if(this.left == null) { return null; } return this.left.search(value); } else { //如果查找的值不小于当前结点,向右子树递归查找 if(this.right == null) { return null; } return this.right.search(value); } } //查找要删除结点的父结点 /** * * @param value 要找到的结点的值 * @return 返回的是要删除的结点的父结点,如果没有就返回null */ public Node searchParent(int value) { //如果当前结点就是要删除的结点的父结点,就返回 if((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) { return this; } else { //如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空 if(value < this.value && this.left != null) { return this.left.searchParent(value); //向左子树递归查找 } else if (value >= this.value && this.right != null) { return this.right.searchParent(value); //向右子树递归查找 } else { return null; // 没有找到父结点 } } } //添加节点的方法 //递归的形式添加节点,需要满足二叉排序树的要求 public void add(Node node){ if (node == null){ return; } //判断传入的节点的值,和当前子树根节点的值的关系 if (node.value<this.value){ //如果当前节点左子节点为空,直接将node给左节点 if (this.left == null){ this.left = node; }else {//如果当前节点左子节点不为空,就递归的向左子树进行添加 this.left.add(node); } }else {//添加的节点的值大于当前节点的值 if (this.right == null){ this.right = node; }else { this.right.add(node); } } } //中序遍历的方法 public void infixOrder() { if(this.left != null) { this.left.infixOrder(); } System.out.println(this); if(this.right != null) { this.right.infixOrder(); } } @Override public String toString() { return "Node{" + "value=" + value + '}'; } }
结果:
1、删除叶子节点2、5、9
2、删除只有一颗子树的节点 1
3、删除有两颗子树的节点10
5、平衡二叉树(AVL)
5.1、实际案例
给出一个数列{1,2,3,4,5,6}
,要求创建一颗二叉排序树(BST), 并分析问题所在.
左边 BST 存在的问题分析:
- 左子树全部为空,从形式上看,更像一个单链表.
- 插入速度没有影响
- 查询速度明显降低(因为需要依次比较), 不能发挥 BST的优势,因为每次还需要比较左子树,其查询速度比单链表还慢
- 解决方案-平衡二叉树(AVL)
5.2、平衡二叉树简介
- 平衡二叉树也叫平衡 二叉搜索树(Self-balancing binary search tree)又被称为 AVL 树, 可以保证查询效率较高。
- 具有以下特点:它是一 一 棵空树或 它的左右两个子树的高度差的绝对值不超过 1,并且 左右两个子树都是一棵
平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等。 - 举例说明, 看看下面哪些 AVL 树, 为什么?
5.3、构建平衡二叉树
5.3.1、左旋转
1、要求: 给出一个数列,创建出对应的平衡二叉树.数列 {4,3,6,5,7,8}
2、思路分析
5.3.2、右旋转
1、要求: 给出一个数列,创建出对应的平衡二叉树.数列 {10,12, 8, 9, 7, 6}
2、思路分析
5.3.3、双旋转
前面的两个数列,进行单旋转(即一次旋转)就可以将非平衡二叉树转成平衡二叉树,但是在某些情况下,单旋转
不能完成平衡二叉树的转换。比如数列
int[] arr = { 10, 11, 7, 6, 8, 9 };
运行原来的代码可以看到,并没有转成 AVL 树.
int[] arr = {2,1,6,5,7,3};
运行原来的代码可以看到,并没有转成 AVL 树
1、问题分析
2、思路分析
- 当符号右旋转的条件时
- 如果它的左子树的右子树高度大于它的左子树的高度
- 先对当前这个结点的左节点进行左旋转
- 在对当前结点进行右旋转的操作即可
5.3.4、整体代码实现
public class AvlTreeDemo { public static void main(String[] args) { //int[] arr = {4,3,6,5,7,8}; //int[] arr = { 10, 12, 8, 9, 7, 6 }; int[] arr = { 10, 11, 7, 6, 8, 9 }; //创建一个 AVLTree对象 AVLTree avlTree = new AVLTree(); //添加结点 for(int i=0; i < arr.length; i++) { avlTree.add(new Node(arr[i])); } //遍历 System.out.println("中序遍历"); avlTree.infixOrder(); System.out.println("在平衡处理后···"); System.out.println("树的高度=" + avlTree.getRoot().height()); //3 System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2 System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2 System.out.println("当前的根结点=" + avlTree.getRoot());//8 } } // 创建AVLTree class AVLTree { private Node root; public Node getRoot() { return root; } // 查找要删除的结点 public Node search(int value) { if (root == null) { return null; } else { return root.search(value); } } // 查找父结点 public Node searchParent(int value) { if (root == null) { return null; } else { return root.searchParent(value); } } // 编写方法: // 1. 返回的 以node 为根结点的二叉排序树的最小结点的值 // 2. 删除node 为根结点的二叉排序树的最小结点 /** * * @param node * 传入的结点(当做二叉排序树的根结点) * @return 返回的 以node 为根结点的二叉排序树的最小结点的值 */ public int delRightTreeMin(Node node) { Node target = node; // 循环的查找左子节点,就会找到最小值 while (target.left != null) { target = target.left; } // 这时 target就指向了最小结点 // 删除最小结点 delNode(target.value); return target.value; } // 删除结点 public void delNode(int value) { if (root == null) { return; } else { // 1.需求先去找到要删除的结点 targetNode Node targetNode = search(value); // 如果没有找到要删除的结点 if (targetNode == null) { return; } // 如果我们发现当前这颗二叉排序树只有一个结点 if (root.left == null && root.right == null) { root = null; return; } // 去找到targetNode的父结点 Node parent = searchParent(value); // 如果要删除的结点是叶子结点 if (targetNode.left == null && targetNode.right == null) { // 判断targetNode 是父结点的左子结点,还是右子结点 if (parent.left != null && parent.left.value == value) { // 是左子结点 parent.left = null; } else if (parent.right != null && parent.right.value == value) {// 是由子结点 parent.right = null; } } else if (targetNode.left != null && targetNode.right != null) { // 删除有两颗子树的节点 int minVal = delRightTreeMin(targetNode.right); targetNode.value = minVal; } else { // 删除只有一颗子树的结点 // 如果要删除的结点有左子结点 if (targetNode.left != null) { if (parent != null) { // 如果 targetNode 是 parent 的左子结点 if (parent.left.value == value) { parent.left = targetNode.left; } else { // targetNode 是 parent 的右子结点 parent.right = targetNode.left; } } else { root = targetNode.left; } } else { // 如果要删除的结点有右子结点 if (parent != null) { // 如果 targetNode 是 parent 的左子结点 if (parent.left.value == value) { parent.left = targetNode.right; } else { // 如果 targetNode 是 parent 的右子结点 parent.right = targetNode.right; } } else { root = targetNode.right; } } } } } // 添加结点的方法 public void add(Node node) { if (root == null) { root = node;// 如果root为空则直接让root指向node } else { root.add(node); } } // 中序遍历 public void infixOrder() { if (root != null) { root.infixOrder(); } else { System.out.println("二叉排序树为空,不能遍历"); } } } // 创建Node结点 class Node { int value; Node left; Node right; public Node(int value) { this.value = value; } // 返回左子树的高度 public int leftHeight() { if (left == null) { return 0; } return left.height(); } // 返回右子树的高度 public int rightHeight() { if (right == null) { return 0; } return right.height(); } // 返回 以该结点为根结点的树的高度 public int height() { return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1; } //左旋转方法 private void leftRotate() { //创建新的结点,以当前根结点的值 Node newNode = new Node(value); //把新的结点的左子树设置成当前结点的左子树 newNode.left = left; //把新的结点的右子树设置成带你过去结点的右子树的左子树 newNode.right = right.left; //把当前结点的值替换成右子结点的值 value = right.value; //把当前结点的右子树设置成当前结点右子树的右子树 right = right.right; //把当前结点的左子树(左子结点)设置成新的结点 left = newNode; } //右旋转 private void rightRotate() { Node newNode = new Node(value); newNode.right = right; newNode.left = left.right; value = left.value; left = left.left; right = newNode; } // 查找要删除的结点 /** * * @param value * 希望删除的结点的值 * @return 如果找到返回该结点,否则返回null */ public Node search(int value) { if (value == this.value) { // 找到就是该结点 return this; } else if (value < this.value) {// 如果查找的值小于当前结点,向左子树递归查找 // 如果左子结点为空 if (this.left == null) { return null; } return this.left.search(value); } else { // 如果查找的值不小于当前结点,向右子树递归查找 if (this.right == null) { return null; } return this.right.search(value); } } // 查找要删除结点的父结点 /** * * @param value * 要找到的结点的值 * @return 返回的是要删除的结点的父结点,如果没有就返回null */ public Node searchParent(int value) { // 如果当前结点就是要删除的结点的父结点,就返回 if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) { return this; } else { // 如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空 if (value < this.value && this.left != null) { return this.left.searchParent(value); // 向左子树递归查找 } else if (value >= this.value && this.right != null) { return this.right.searchParent(value); // 向右子树递归查找 } else { return null; // 没有找到父结点 } } } @Override public String toString() { return "Node [value=" + value + "]"; } // 添加结点的方法 // 递归的形式添加结点,注意需要满足二叉排序树的要求 public void add(Node node) { if (node == null) { return; } // 判断传入的结点的值,和当前子树的根结点的值关系 if (node.value < this.value) { // 如果当前结点左子结点为null if (this.left == null) { this.left = node; } else { // 递归的向左子树添加 this.left.add(node); } } else { // 添加的结点的值大于 当前结点的值 if (this.right == null) { this.right = node; } else { // 递归的向右子树添加 this.right.add(node); } } //当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转 if(rightHeight() - leftHeight() > 1) { //如果它的右子树的左子树的高度大于它的右子树的右子树的高度 if(right != null && right.leftHeight() > right.rightHeight()) { //先对右子结点进行右旋转 right.rightRotate(); //然后在对当前结点进行左旋转 leftRotate(); //左旋转.. } else { //直接进行左旋转即可 leftRotate(); } return ; //必须要!!! } //当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转 if(leftHeight() - rightHeight() > 1) { //如果它的左子树的右子树高度大于它的左子树的高度 if(left != null && left.rightHeight() > left.leftHeight()) { //先对当前结点的左结点(左子树)->左旋转 left.leftRotate(); //再对当前结点进行右旋转 rightRotate(); } else { //直接进行右旋转即可 rightRotate(); } } } // 中序遍历 public void infixOrder() { if (this.left != null) { this.left.infixOrder(); } System.out.println(this); if (this.right != null) { this.right.infixOrder(); } } }
测试结果:
到这里关于树结构的实际应用的内容就结束了,关于树结构的具体应用像赫夫曼编码,二叉排序树等代码比较复杂,
大家重点要根据思路图解来分析解题过程,代码的具体实现要尽量理解,
最后希望这篇文章对大家有所帮助(◍•͈⌔•͈◍)