【机器学习】数据准备–python爬虫

前言

我们在学习机器学习相关内容时,一般是不需要我们自己去爬取数据的,因为很多的算法学习很友好的帮助我们打包好了相关数据,但是这并不代表我们不需要进行学习和了解相关知识。在这里我们了解三种数据的爬取:鲜花/明星图像的爬取、中国艺人图像的爬取、股票数据的爬取。分别对着三种爬虫进行学习和使用。

  • 体会
    个人感觉爬虫的难点就是URL的获取,URL的获取与自身的经验有关,这点我也很难把握,一般URL获取是通过访问该网站通过抓包进行分析获取的。一般也不一定需要抓包工具,通过浏览器的开发者工具(F12/Fn+F12)即可进行获取。

鲜花/明星图像爬取

URL获取

  • 百度搜索鲜花关键词,并打开开发者工具,点击NrtWork

【机器学习】数据准备--python爬虫

  • 找到数据包进行分析,分析重要参数
    【机器学习】数据准备--python爬虫

    • pn 表示第几张图片加载
    • rn 表示加载多少图片
  • 查看返回值进行分析,可以看到图片体制在ThumbURL中
    【机器学习】数据准备--python爬虫

下载过程

代码

import requests import os import urllib  class GetImage():     def __init__(self,keyword='鲜花',paginator=1):         self.url = 'http://image.baidu.com/search/acjson?'          self.headers = {             'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36'         }          self.keyword = keyword         self.paginator = paginator       def get_param(self):          keyword = urllib.parse.quote(self.keyword)         params = []          for i in range(1,self.paginator+1):             params.append(                'tn=resultjson_com&logid=10338332981203604364&ipn=rj&ct=201326592&is=&fp=result&fr=&word={}&queryWord={}&cl=2&lm=-1&ie=utf-8&oe=utf-8&adpicid=&st=&z=&ic=&hd=&latest=&copyright=&s=&se=&tab=&width=&height=&face=&istype=&qc=&nc=1&expermode=&nojc=&isAsync=&pn={}&rn=30&gsm=78&1650241802208='.format(keyword,keyword,30*i)              )         return params     def get_urls(self,params):         urls = []         for param in params:             urls.append(self.url+param)         return urls      def get_image_url(self,urls):         image_url = []         for url in urls:             json_data = requests.get(url,headers = self.headers).json()             json_data = json_data.get('data')             for i in json_data:                 if i:                     image_url.append(i.get('thumbURL'))         return image_url     def get_image(self,image_url):         ##根据图片url,存入图片         file_name = os.path.join("", self.keyword)         #print(file_name)         if not os.path.exists(file_name):             os.makedirs(file_name)          for index,url in enumerate(image_url,start=1):             with open(file_name+'/{}.jpg'.format(index),'wb') as f:                 f.write(requests.get(url,headers=self.headers).content)              if index != 0 and index%30 == 0:                 print("第{}页下载完成".format(index/30))       def __call__(self, *args, **kwargs):         params = self.get_param()         urls = self.get_urls(params)         image_url = self.get_image_url(urls)         self.get_image(image_url=image_url)   if __name__ == '__main__':     spider = GetImage('鲜花',3)     spider()    

明星图像爬取

  • 只需要把main函数里的关键字换一下就可以了,换成明星即可
 if __name__ == '__main__':     spider = GetImage('明星',3)     spider()  

其他主题

  • 同理的我们需要其他图片也可以换
if __name__ == '__main__':     spider = GetImage('动漫',3)     spider() 

艺人图像爬取

方法一

  • 我们可以使用上面的爬取图片的方式,把关键词换为中国艺人也可以爬取图片

方法二

  • 显然上面的方式可以满足我们部分需求,我们如果需要爬取不同艺人那么上面的方式就不是那么好了。
  • 我们下载10个不同艺人的图片,然后用他们的名字命名图片名,再把他们存入picture文件内

代码

import requests import json import os import urllib  def getPicinfo(url):     headers = {        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:101.0) Gecko/20100101 Firefox/101.0',      }     response = requests.get(url,headers)      if response.status_code == 200:         return response.text     return None   Download_dir = 'picture' if os.path.exists(Download_dir) == False:     os.mkdir(Download_dir)   pn_num = 1 rn_num = 10  for k in range(pn_num):     url = "https://sp0.baidu.com/8aQDcjqpAAV3otqbppnN2DJv/api.php?resource_id=28266&from_mid=500&format=json&ie=utf-8&oe=utf-8&query=%E4%B8%AD%E5%9B%BD%E8%89%BA%E4%BA%BA&sort_key=&sort_type=1&stat0=&stat1=&stat2=&stat3=&pn="+str(pn_num)+"&rn="+str(rn_num)+"&_=1580457480665"     res = getPicinfo(url)     json_str = json.loads(res)     figs = json_str['data'][0]['result']      for i in figs:         name = i['ename']         img_url = i['pic_4n_78']         img_res = requests.get(img_url)         if img_res.status_code == 200:             ext_str_splits = img_res.headers['Content-Type'].split('/')             ext = ext_str_splits[-1]             fname = name+'.'+ext             open(os.path.join(Download_dir,fname),'wb').write(img_res.content)              print(name,img_url,'saved')  

股票数据爬取

我们对http://quote.eastmoney.com/center/gridlist.html 内的股票数据进行爬取,并且把数据储存下来

爬取代码

# http://quote.eastmoney.com/center/gridlist.html import requests from fake_useragent import UserAgent import json import csv import  urllib.request as r import threading  def getHtml(url):     r = requests.get(url, headers={         'User-Agent': UserAgent().random,     })     r.encoding = r.apparent_encoding     return r.text   # 爬取多少 num = 20  stockUrl = 'http://52.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112409623798991171317_1654957180928&pn=1&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&wbp2u=|0|0|0|web&fid=f3&fs=m:0+t:80&fields=f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152&_=1654957180938'   if __name__ == '__main__':     responseText = getHtml(stockUrl)     jsonText = responseText.split("(")[1].split(")")[0];     resJson = json.loads(jsonText)     datas = resJson['data']['diff']     dataList = []     for data in datas:          row = [data['f12'],data['f14']]         dataList.append(row)      print(dataList)      f = open('stock.csv', 'w+', encoding='utf-8', newline="")     writer = csv.writer(f)     writer.writerow(("代码","名称"))     for data in dataList:         writer.writerow((data[0]+"t",data[1]+"t"))     f.close()   def getStockList():     stockList = []     f = open('stock.csv', 'r', encoding='utf-8')     f.seek(0)     reader = csv.reader(f)     for item in reader:         stockList.append(item)      f.close()     return stockList  def downloadFile(url,filepath):      try:         r.urlretrieve(url,filepath)     except Exception as e:         print(e)     print(filepath,"is downLoaded")     pass  sem = threading.Semaphore(1)  def dowmloadFileSem(url,filepath):     with sem:         downloadFile(url,filepath)  urlStart = 'http://quotes.money.163.com/service/chddata.html?code=' urlEnd = '&end=20210221&fields=TCLOSW;HIGH;TOPEN;LCLOSE;CHG;PCHG;VOTURNOVER;VATURNOVER'  if __name__ == '__main__':     stockList = getStockList()     stockList.pop(0)     print(stockList)       for s in stockList:         scode = str(s[0].split("t")[0])          url = urlStart+("0" if scode.startswith('6') else '1')+ scode + urlEnd          print(url)         filepath = (str(s[1].split("t")[0])+"_"+scode)+".csv"         threading.Thread(target=dowmloadFileSem,args=(url,filepath)).start()     

数据处理代码

有可能当时爬取的数据是脏数据,运行下面代码不一定能跑通,需要你自己处理数据还是其他方法

## 主要利用matplotlib进行图像绘制  import pandas as pd import matplotlib.pyplot as plt import csv import 股票数据爬取 as gp  plt.rcParams['font.sans-serif'] = ['simhei'] #指定字体 plt.rcParams['axes.unicode_minus'] = False #显示-号 plt.rcParams['figure.dpi'] = 100 #每英寸点数  files = []  def read_file(file_name):     data = pd.read_csv(file_name,encoding='gbk')     col_name = data.columns.values     return data,col_name  def get_file_path():     stock_list = gp.getStockList()     paths = []     for stock in stock_list[1:]:         p = stock[1].strip()+"_"+stock[0].strip()+".csv"         print(p)         data,_=read_file(p)         if len(data)>1:             files.append(p)             print(p)  get_file_path() print(files)  def get_diff(file_name):     data,col_name = read_file(file_name)     index = len(data['日期'])-1     sep = index//15     plt.figure(figsize=(15,17))      x = data['日期'].values.tolist()     x.reverse()     xticks = list(range(0,len(x),sep))     xlabels = [x[i] for i in xticks]     xticks.append(len(x))       y1 = [float(c) if c!='None' else 0 for c in data['涨跌额'].values.tolist()]     y2 = [float(c) if c != 'None' else 0 for c in data['涨跌幅'].values.tolist()]      y1.reverse()     y2.reverse()      ax1 = plt.subplot(211)     plt.plot(range(1,len(x)+1),y1,c='r')     plt.title('{}-涨跌额/涨跌幅'.format(file_name.split('_')[0]),fontsize = 20)     ax1.set_xticks(xticks)     ax1.set_xticklabels(xlabels,rotation = 40)     plt.ylabel('涨跌额')      ax2 = plt.subplot(212)     plt.plot(range(1, len(x) + 1), y1, c='g')     #plt.title('{}-涨跌额/涨跌幅'.format(file_name.splir('_')[0]), fontsize=20)     ax2.set_xticks(xticks)     ax2.set_xticklabels(xlabels, rotation=40)     plt.xlabel('日期')     plt.ylabel('涨跌额')     plt.show()   print(len(files)) for file in files:     get_diff(file) 

总结

上文描述了三个数据爬取的案例,不同的数据爬取需要我们对不同的URL进行获取,不同参数进行输入,URL如何组合、如何获取、这是数据爬取的难点,需要有一定的经验和基础。

发表评论

相关文章