bitmap技术解析:redis与roaringBitmap

    bitmap的表象意义是,使用一个01标识位来表示是否的状态,可以达到节省空间和高效判定的效果。在我们的实际工作中,也有着许多的应用场景,相信了解bitmap定会给你带来一些额外的收获。


 

1. bitmap使用场景说明

    比如,我想记录某用户某天是否登录过,我们有很多做法。简单的,只要用户登录,就在db中记录一条数据,要判断用户某天是否登录过,只需查询对应日期是否有记录即可。如果想统计当日登录的人数,count下记录就可以了(可能需要去重))。这样不是不可以,只是如果我们想优化下性能怎么办?这时我们就可以使用bitmap了,以日期为单位创建独立bitmap,一个用户id一个标识,要想判断用户是否登录过,直接取对应位标识即可。

    再比如,我们有一批白名单用户,在白名单里则放行,否则拒绝访问。同样,我们可以用一行行的记录用db来保存处理,但这可能很占空间,或者性能不怎么样。同样,使用bitmap可以快速处理这种场景。

    再比如,用于快速去重一些处理,第一次处理时,将标识位改为1,后续将进行幂等,用bitmap可以快速过滤。


 

2. bitmap的通俗理解

    bitmap简单理解来说就是,bit的映射,将一个个的key映射到bit位上去,这样就可以快速通过key直接定位到标识上去了。另外,因都是一个个的bit,所以进行count操作很方便。对于两个bitmap的and/or位运算也是很方便和快速的。


 

3. redis的bitmap实现

    理解了面上的bitmap的意思,要怎么做也就大概会有个思路了。

    谈到redis,大家的映射问题:高性能,高并发,缓存解决方案。好像有了redis,就有了底气和别人一比高下了似的。那么,在bitmap方面,它是否也神奇之处呢?

    实际上,redis的bitmap实现比较简单,和字面上的意思差不多,它是基于string实现的。

    简单来说就是,string底层的存储也是二进制的,也就是说string天生就看起来和bitmap的存储类似,比如'ab'的底层存储就是x61x62, 拆解成二进制就是 0110 0001 0110 0010。如果我我们直接将其代表bitmap操作数,那么总共就有6个数据有值,分别是2,3,8,10,11,15位有值。这样说bitmap应该很清晰了。

    接下来我们来讨论下一个空间问题。我们知道一个16位的二进制可以表示最大 65536,32位最大表示 4294967296,好像一个比较小的位就可以表示很大的数据了。但是这和我们说的bitmap还不一样,在这里,一个16位的二进制数只能表示16个bitmap值,32位数只能表示32个值。从这点来说,bitmap好像很浪费空间呢。我们知道,现在的大多数机器都是64位的。所以,如果我以这种结构存储的话,应该只能存64个标识了。

    那么自然的,我们必须要使用一个合适的结构来存储这些bit,redis中使用string结构来存储bitmap,也就是说将string转换成二进制后,用其每一位来表示一个标识。这样的话,能够存放多少个标识就扩展到了string最大限制上去了。redis限制string最大是512M,也就是2^19KB=2^29B=2^32b,即最大2^32位。

    redis的bitmap操作命令,简单示例如下:(咱们不是文档,如需手册,请参考官网)

setbit key offset 1|0 getbit key bitcount key

 

下面,我们简单看下redis的setbit的实现源码,具体看看其处理逻辑。

// bitops.c // 操作命令: setbit key offset 0|1 /* SETBIT key offset bitvalue */ void setbitCommand(client *c) {     robj *o;     char *err = "bit is not an integer or out of range";     uint64_t bitoffset;     ssize_t byte, bit;     int byteval, bitval;     long on;   // 解析 offset 值     if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)         return;   // 解析 0|1 值     if (getLongFromObjectOrReply(c,c->argv[3],&on,err) != C_OK)         return;   // 只接受0|1的输入,其他一律报错     /* Bits can only be set or cleared... */     if (on & ~1) {         addReplyError(c,err);         return;     }   // 获取key对应的string对象,方便后续操作     int dirty;     if ((o = lookupStringForBitCommand(c,bitoffset,&dirty)) == NULL) return;    // 计算偏移量: 1byte=8bit, 所以真正的位所在就等于 byte大定位 + 小移位   // 从高到低计数, 即类似于 big-endian     /* Get current values */     byte = bitoffset >> 3;     byteval = ((uint8_t*)o->ptr)[byte];     bit = 7 - (bitoffset & 0x7);     bitval = byteval & (1 << bit);      /* Either it is newly created, changed length, or the bit changes before and after.      * Note that the bitval here is actually a decimal number.      * So we need to use `!!` to convert it to 0 or 1 for comparison. */     if (dirty || (!!bitval != on)) {     // 先取反保留当前值, 再重新设置on 进去         /* Update byte with new bit value. */         byteval &= ~(1 << bit);         byteval |= ((on & 0x1) << bit);         ((uint8_t*)o->ptr)[byte] = byteval;     // 集群扩散         signalModifiedKey(c,c->db,c->argv[1]);         notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id);         server.dirty++;     }   // 返回旧的值给客户端     /* Return original value. */     addReply(c, bitval ? shared.cone : shared.czero); } // 查找key对应的 string 对象 /* This is a helper function for commands implementations that need to write  * bits to a string object. The command creates or pad with zeroes the string  * so that the 'maxbit' bit can be addressed. The object is finally  * returned. Otherwise if the key holds a wrong type NULL is returned and  * an error is sent to the client. */ robj *lookupStringForBitCommand(client *c, uint64_t maxbit, int *dirty) {     size_t byte = maxbit >> 3;     robj *o = lookupKeyWrite(c->db,c->argv[1]);     if (checkType(c,o,OBJ_STRING)) return NULL;     if (dirty) *dirty = 0;      if (o == NULL) {         o = createObject(OBJ_STRING,sdsnewlen(NULL, byte+1));         dbAdd(c->db,c->argv[1],o);         if (dirty) *dirty = 1;     } else {         o = dbUnshareStringValue(c->db,c->argv[1],o);         size_t oldlen = sdslen(o->ptr);         o->ptr = sdsgrowzero(o->ptr,byte+1);         if (dirty && oldlen != sdslen(o->ptr)) *dirty = 1;     }     return o; }

  很简单吧,不过应对一些场景还是绰绰有余了,选对场景很重要。

   redis的bitmap实现简单,易于理解,但也有比较大的弊端。这种基于string的实现方式简单是简单,但存在以下几个问题:

1. 会存在较大间隙值,比如一开始就存储一个较大的偏移标识进去,比如8位的偏移,就可能让内存占用上M级别(然而你还什么都没干);

2.存储范围受限,最大只能存int型的数字偏移,如果以userid为偏移,在用户量小且以自增id生成用户id也许没问题,但其他情况就不好说了;

3.随着数据量越来越大,单次设置标识的耗时就会越来越长(大key问题),且一不小心使用get命令进行读取数据时,redis就尴尬了;


 

4. roaringbitmap实现

    上篇讲到redis的实现,简单易懂,但是会存在一个极大空间浪费的问题,而且受限于数组大小,存储空间有限。那有没有什么办法,可以压缩存储空间?

    roaringbitmap使用多级分段存储方式,避免了直接存储的问题:一是空隙值问题,二是数值限制问题。它主要通过将64位2个32位存储,将32位分2个16位存储的方式实现。其操作主要有:add/contains/getlongcadinaty... 等常规接口。

    其大致存储结构图如下:

bitmap技术解析:redis与roaringBitmap

具体实现如下:

// 1. 引入依赖包         <dependency>             <groupId>org.roaringbitmap</groupId>             <artifactId>RoaringBitmap</artifactId>             <version>0.9.28</version>         </dependency> // 2. 建立单元测试     @Test     public void testRoaringBitmap() {         Roaring64NavigableMap bitmapObj = new Roaring64NavigableMap();         bitmapObj.add(11122233366L);         boolean exists = bitmapObj.contains(1);         long eleSize = bitmapObj.getLongCardinality();         System.out.println("exits:" + exists + ", eleSize:" + eleSize);     } // 具体实现 // Roaring64NavigableMap   /**    * Set all the specified values to true. This can be expected to be slightly faster than calling    * "add" repeatedly. The provided integers values don't have to be in sorted order, but it may be    * preferable to sort them from a performance point of view.    *    * @param dat set values    */   public void add(long... dat) {     for (long oneLong : dat) {       addLong(oneLong);     }   }      /**    * Add the value to the container (set the value to "true"), whether it already appears or not.    *    * Java lacks native unsigned longs but the x argument is considered to be unsigned. Within    * bitmaps, numbers are ordered according to {@link Long#compareUnsigned}. We order the numbers    * like 0, 1, ..., 9223372036854775807, -9223372036854775808, -9223372036854775807,..., -1.    *    * @param x long value    */   @Override   public void addLong(long x) {   // 高低位32位拆分 (int) (id >> 32)     int high = high(x);     int low = low(x);      // Copy the reference to prevent race-condition     Map.Entry<Integer, BitmapDataProvider> local = latestAddedHigh;      BitmapDataProvider bitmap;     if (local != null && local.getKey().intValue() == high) {       bitmap = local.getValue();     } else {       bitmap = highToBitmap.get(high);       if (bitmap == null) {       // 使用 RoaringBitmap 来保存低层数据, 一级存储     // 使用 treemap 保存整个结构,保证查找快速         bitmap = newRoaringBitmap();         pushBitmapForHigh(high, bitmap);       }     // 使用临时保存当前高位实例的方式,避免经常查找map带来的性能消耗     // 但实际上这要求客户端的操作是按序操作的,这样才能很好利用这个特性,如果只是随机值的话,效果就大打折扣了       latestAddedHigh = new AbstractMap.SimpleImmutableEntry<>(high, bitmap);     }   // 存储低位信息     bitmap.add(low);   // 扩容处理     invalidateAboveHigh(high);   }    private void invalidateAboveHigh(int high) {     // The cardinalities after this bucket may not be valid anymore     if (compare(firstHighNotValid, high) > 0) {       // High was valid up to now       firstHighNotValid = high;        int indexNotValid = binarySearch(sortedHighs, firstHighNotValid);        final int indexAfterWhichToReset;       if (indexNotValid >= 0) {         indexAfterWhichToReset = indexNotValid;       } else {         // We have invalidate a high not already present: added a value for a brand new high         indexAfterWhichToReset = -indexNotValid - 1;       }        // This way, sortedHighs remains sorted, without making a new/shorter array       Arrays.fill(sortedHighs, indexAfterWhichToReset, sortedHighs.length, highestHigh());     }     allValid = false;   }  // 低位存储实现 // roaringbitmap   /**    * Add the value to the container (set the value to "true"), whether it already appears or not.    *    * Java lacks native unsigned integers but the x argument is considered to be unsigned.    * Within bitmaps, numbers are ordered according to {@link Integer#compareUnsigned}.    * We order the numbers like 0, 1, ..., 2147483647, -2147483648, -2147483647,..., -1.    *    * @param x integer value    */   @Override   public void add(final int x) {   // 再分高低位存储, 即32位拆分为2个16位, (char) (x >>> 16)     final char hb = Util.highbits(x);   // 已经存储过了,则直接更新值即可   // highLowContainer = new RoaringArray();     final int i = highLowContainer.getIndex(hb);     if (i >= 0) {     // 此处查找成功,只是代表高位已经被某些值存储过了,但低位仍然在变化       highLowContainer.setContainerAtIndex(i,           highLowContainer.getContainerAtIndex(i).add(Util.lowbits(x)));     } else {     // 否则新插入一个你们数, 默认以数组形式存储, 默认初始化大小为4       final ArrayContainer newac = new ArrayContainer();       highLowContainer.insertNewKeyValueAt(-i - 1, hb, newac.add(Util.lowbits(x)));     }   }      // involves a binary search   int getIndex(char x) {     // before the binary search, we optimize for frequent cases     if ((size == 0) || (keys[size - 1] == x)) {       return size - 1;     }   // 使用二分查找法查找值的存在性,实际上内部还有其他优化     // no luck we have to go through the list     return this.binarySearch(0, size, x);   }   // insert a new key, it is assumed that it does not exist   void insertNewKeyValueAt(int i, char key, Container value) {     extendArray(1);     System.arraycopy(keys, i, keys, i + 1, size - i);     keys[i] = key;     System.arraycopy(values, i, values, i + 1, size - i);     values[i] = value;     size++;   }   // RoaringArray   protected Container getContainerAtIndex(int i) {     return this.values[i];   } // 数组的低位存储实现 // ArrayContainer   /**    * running time is in O(n) time if insert is not in order.    */   @Override   public Container add(final char x) {   // 要插入的值大于当前容量/未大于当前容量分别处理     if (cardinality == 0 || (cardinality > 0             && (x) > (content[cardinality - 1]))) {     // 大于 4096 后,扩展为 bitmap存储结构       if (cardinality >= DEFAULT_MAX_SIZE) {         return toBitmapContainer().add(x);       }     // 扩容,策略分多种情况处理       if (cardinality >= this.content.length) {         increaseCapacity();       }     // 直接数组存储具体值即可     // 也就是说,表面看起来这里可能会被插入重复的值,但是实际这里插入的是比最大值还大的值     // 更小的值则会先查找存在性,再进行找位插入       content[cardinality++] = x;     } else {       int loc = Util.unsignedBinarySearch(content, 0, cardinality, x);     // 小的值被插入到中间,如果找到相同的值,则本次add将被忽略     // 也就是说,这种实现的是数据的有序插入       if (loc < 0) {         // Transform the ArrayContainer to a BitmapContainer         // when cardinality = DEFAULT_MAX_SIZE         if (cardinality >= DEFAULT_MAX_SIZE) {           return toBitmapContainer().add(x);         }         if (cardinality >= this.content.length) {           increaseCapacity();         }         // insertion : shift the elements > x by one position to         // the right         // and put x in it's appropriate place         System.arraycopy(content, -loc - 1, content, -loc, cardinality + loc + 1);         content[-loc - 1] = x;         ++cardinality;       }     }     return this;   }   // temporarily allow an illegally large size, as long as the operation creating   // the illegal container does not return it.   private void increaseCapacity(boolean allowIllegalSize) {     int newCapacity = (this.content.length == 0) ? DEFAULT_INIT_SIZE         : this.content.length < 64 ? this.content.length * 2             : this.content.length < 1067 ? this.content.length * 3 / 2                 : this.content.length * 5 / 4;     // never allocate more than we will ever need     if (newCapacity > ArrayContainer.DEFAULT_MAX_SIZE && !allowIllegalSize) {       newCapacity = ArrayContainer.DEFAULT_MAX_SIZE;     }     // if we are within 1/16th of the max, go to max     if (newCapacity > ArrayContainer.DEFAULT_MAX_SIZE - ArrayContainer.DEFAULT_MAX_SIZE / 16         && !allowIllegalSize) {       newCapacity = ArrayContainer.DEFAULT_MAX_SIZE;     }     this.content = Arrays.copyOf(this.content, newCapacity);   }  // bitmap的低位存储实现 // BitmapContainer   // 转移老数据到bitmap的低位存储中   /**    * Copies the data in a bitmap container.    *    * @return the bitmap container    */   @Override   public BitmapContainer toBitmapContainer() {     BitmapContainer bc = new BitmapContainer();     bc.loadData(this);     return bc;   }    void loadData(final ArrayContainer arrayContainer) {     this.cardinality = arrayContainer.cardinality;     for (int k = 0; k < arrayContainer.cardinality; ++k) {       final char x = arrayContainer.content[k];     // 取整64, 这个移位是真没看懂, 反正超过31之后的       bitmap[(x) / 64] |= (1L << x);     }   }      @Override   public Container add(final char i) {     final long previous = bitmap[i >>> 6];     long newval = previous | (1L << i);     bitmap[i >>> 6] = newval;     if (USE_BRANCHLESS) {       cardinality += (int)((previous ^ newval) >>> i);     } else if (previous != newval) {       ++cardinality;     }     return this;   }

 

  整体说明,当数据为空时,结构自然为空,当只有一位数据时,就非常小,当数据量越来越大,空间也跟着变大(这很正常)。只要不是超大数量级的bitmap,空间就不会很大。但如果将每个位上都存储上值,那么它占用的空间比简单的bitmap数据结构是要大些的,因为它的每个key还保存至少超过1bit的数据,甚至是原始数据,另外还有一些额外的treemap的数据结构的开销。

  另外,当总体量级上千万的话,其实这种存储方案,存在大对象的问题,你可能就需要jvm参数调优来解决,或者整体换方案了。

 

5. 还有没有其他更好的实现?

    上面两种方案,其实都不错,但好像都还有些问题存在。我们主要针对大数据量的问题,两个方案都没办法解决,那么是否就真的无解了呢?其实,办法还是有的,比如我们做一些自定义的数据分段,比如 1-100的存在bitmap1, 101-200存在bitmap2,这样就可以解决大容量的问题了。

    只是这种方案需要我们小心处理自定义分段带来的技术复杂性问题,也得小心对待,尤其是重要的生产场景,必须要有大量的性能测试和准确性测试,否则挖坑给自己就不好玩了。

  文章原创地址:bitmap技术解析:redis与roaringBitmap

 

  

发表评论

相关文章

当前内容话题