[python]多线程快速入门

前言

线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位。由于CPython的GIL限制,多线程实际为单线程,大多只用来处理IO密集型任务。

Python一般用标准库threading来进行多线程编程。

基本使用

  • 方式1,创建threading.Thread类的示例
import threading import time  def task1(counter: int):     print(f"thread: {threading.current_thread().name}, args: {counter}, start time: {time.strftime('%F %T')}")     num = counter     while num > 0:         time.sleep(3)         num -= 1     print(f"thread: {threading.current_thread().name}, args: {counter}, end time: {time.strftime('%F %T')}")  if __name__ == "__main__":     print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")     # 创建三个线程     t1 = threading.Thread(target=task1, args=(7,))     t2 = threading.Thread(target=task1, args=(5,))     t3 = threading.Thread(target=task1, args=(3,))      # 启动线程     t1.start()     t2.start()     t3.start()      # join() 用于阻塞主线程, 等待子线程执行完毕     t1.join()     t2.join()     t3.join()     print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}") 

执行输出示例

main thread: MainThread, start time: 2024-10-26 12:42:37 thread: Thread-1 (task1), args: 7, start time: 2024-10-26 12:42:37 thread: Thread-2 (task1), args: 5, start time: 2024-10-26 12:42:37 thread: Thread-3 (task1), args: 3, start time: 2024-10-26 12:42:37 thread: Thread-3 (task1), args: 3, end time: 2024-10-26 12:42:46 thread: Thread-2 (task1), args: 5, end time: 2024-10-26 12:42:52 thread: Thread-1 (task1), args: 7, end time: 2024-10-26 12:42:58 main thread: MainThread, end time: 2024-10-26 12:42:58 
  • 方式2,继承threading.Thread类,重写run()__init__()方法
import threading import time  class MyThread(threading.Thread):     def __init__(self, counter: int):         super().__init__()         self.counter = counter      def run(self):         print(f"thread: {threading.current_thread().name}, args: {self.counter}, start time: {time.strftime('%F %T')}")         num = self.counter         while num > 0:             time.sleep(3)             num -= 1         print(f"thread: {threading.current_thread().name}, args: {self.counter}, end time: {time.strftime('%F %T')}")  if __name__ == "__main__":     print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")     # 创建三个线程     t1 = MyThread(7)     t2 = MyThread(5)     t3 = MyThread(3)      # 启动线程     t1.start()     t2.start()     t3.start()      # join() 用于阻塞主线程, 等待子线程执行完毕     t1.join()     t2.join()     t3.join()     print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}") 

继承threading.Thread类也可以写成这样,调用外部函数。

import threading import time  def task1(counter: int):     print(f"thread: {threading.current_thread().name}, args: {counter}, start time: {time.strftime('%F %T')}")     num = counter     while num > 0:         time.sleep(3)         num -= 1     print(f"thread: {threading.current_thread().name}, args: {counter}, end time: {time.strftime('%F %T')}")  class MyThread(threading.Thread):     def __init__(self, target, args: tuple):         super().__init__()         self.target = target         self.args = args          def run(self):         self.target(*self.args)  if __name__ == "__main__":     print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")     # 创建三个线程     t1 = MyThread(target=task1, args=(7,))     t2 = MyThread(target=task1, args=(5,))     t3 = MyThread(target=task1, args=(3,))      # 启动线程     t1.start()     t2.start()     t3.start()      # join() 用于阻塞主线程, 等待子线程执行完毕     t1.join()     t2.join()     t3.join()     print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}") 

多线程同步

如果多个线程共同对某个数据修改,则可能出现不可预料的后果,这时候就需要某些同步机制。比如如下代码,结果是随机的(个人电脑用python3.13实测结果都是0,而低版本的python3.6运行结果的确是随机的)

import threading import time  num = 0  def task1(counter: int):     print(f"thread: {threading.current_thread().name}, args: {counter}, start time: {time.strftime('%F %T')}")     global num     for _ in range(100000000):         num = num + counter         num = num - counter     print(f"thread: {threading.current_thread().name}, args: {counter}, end time: {time.strftime('%F %T')}")  if __name__ == "__main__":     print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")     # 创建三个线程     t1 = threading.Thread(target=task1, args=(7,))     t2 = threading.Thread(target=task1, args=(5,))     t3 = threading.Thread(target=task1, args=(3,))     t4 = threading.Thread(target=task1, args=(6,))     t5 = threading.Thread(target=task1, args=(8,))      # 启动线程     t1.start()     t2.start()     t3.start()     t4.start()     t5.start()      # join() 用于阻塞主线程, 等待子线程执行完毕     t1.join()     t2.join()     t3.join()     t4.join()     t5.join()          print(f"num: {num}")     print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}") 

Lock-锁

使用互斥锁可以在一个线程访问数据时,拒绝其它线程访问,直到解锁。threading.Thread中的Lock()Rlock()可以提供锁功能。

import threading import time  num = 0  mutex = threading.Lock()  def task1(counter: int):     print(f"thread: {threading.current_thread().name}, args: {counter}, start time: {time.strftime('%F %T')}")     global num     mutex.acquire()     for _ in range(100000):         num = num + counter         num = num - counter     mutex.release()     print(f"thread: {threading.current_thread().name}, args: {counter}, end time: {time.strftime('%F %T')}")  if __name__ == "__main__":     print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")     # 创建三个线程     t1 = threading.Thread(target=task1, args=(7,))     t2 = threading.Thread(target=task1, args=(5,))     t3 = threading.Thread(target=task1, args=(3,))      # 启动线程     t1.start()     t2.start()     t3.start()      # join() 用于阻塞主线程, 等待子线程执行完毕     t1.join()     t2.join()     t3.join()          print(f"num: {num}")     print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}") 

Semaphore-信号量

互斥锁是只允许一个线程访问共享数据,而信号量是同时允许一定数量的线程访问共享数据。比如银行有5个窗口,允许同时有5个人办理业务,后面的人只能等待,待柜台有空闲才可以进入。

import threading import time from random import randint  semaphore = threading.BoundedSemaphore(5)  def business(name: str):     semaphore.acquire()     print(f"{time.strftime('%F %T')} {name} is handling")     time.sleep(randint(3, 10))     print(f"{time.strftime('%F %T')} {name} is done")     semaphore.release()  if __name__ == "__main__":     print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")     threads = []     for i in range(10):         t = threading.Thread(target=business, args=(f"thread-{i}",))         threads.append(t)      for t in threads:         t.start()      for t in threads:         t.join()          print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}") 

执行输出

main thread: MainThread, start time: 2024-10-26 17:40:10 2024-10-26 17:40:10 thread-0 is handling 2024-10-26 17:40:10 thread-1 is handling 2024-10-26 17:40:10 thread-2 is handling 2024-10-26 17:40:10 thread-3 is handling 2024-10-26 17:40:10 thread-4 is handling 2024-10-26 17:40:15 thread-2 is done 2024-10-26 17:40:15 thread-5 is handling 2024-10-26 17:40:16 thread-0 is done 2024-10-26 17:40:16 thread-6 is handling 2024-10-26 17:40:19 thread-3 is done 2024-10-26 17:40:19 thread-4 is done 2024-10-26 17:40:19 thread-7 is handling 2024-10-26 17:40:19 thread-8 is handling 2024-10-26 17:40:20 thread-1 is done 2024-10-26 17:40:20 thread-9 is handling 2024-10-26 17:40:21 thread-6 is done 2024-10-26 17:40:23 thread-7 is done 2024-10-26 17:40:24 thread-5 is done 2024-10-26 17:40:24 thread-8 is done 2024-10-26 17:40:30 thread-9 is done main thread: MainThread, end time: 2024-10-26 17:40:30 

Condition-条件对象

Condition对象能让一个线程A停下来,等待其他线程,其他线程通知后线程A继续运行。

import threading import time import random  class Employee(threading.Thread):     def __init__(self, username: str, cond: threading.Condition):         self.username = username         self.cond = cond         super().__init__()      def run(self):         with self.cond:             print(f"{time.strftime('%F %T')} {self.username} 到达公司")             self.cond.wait()  # 等待通知             print(f"{time.strftime('%F %T')} {self.username} 开始工作")             time.sleep(random.randint(1, 5))             print(f"{time.strftime('%F %T')} {self.username} 工作完成")  class Boss(threading.Thread):     def __init__(self, username: str, cond: threading.Condition):         self.username = username         self.cond = cond         super().__init__()      def run(self):         with self.cond:             print(f"{time.strftime('%F %T')} {self.username} 发出通知")             self.cond.notify_all()  # 通知所有线程         time.sleep(2)  if __name__ == "__main__":     cond = threading.Condition()     boss = Boss("老王", cond)          employees = []     for i in range(5):         employees.append(Employee(f"员工{i}", cond))      for employee in employees:         employee.start()     boss.start()      boss.join()     for employee in employees:         employee.join()  

执行输出

2024-10-26 21:16:20 员工0 到达公司 2024-10-26 21:16:20 员工1 到达公司 2024-10-26 21:16:20 员工2 到达公司 2024-10-26 21:16:20 员工3 到达公司 2024-10-26 21:16:20 员工4 到达公司 2024-10-26 21:16:20 老王 发出通知 2024-10-26 21:16:20 员工4 开始工作 2024-10-26 21:16:23 员工4 工作完成 2024-10-26 21:16:23 员工1 开始工作 2024-10-26 21:16:28 员工1 工作完成 2024-10-26 21:16:28 员工2 开始工作 2024-10-26 21:16:30 员工2 工作完成 2024-10-26 21:16:30 员工0 开始工作 2024-10-26 21:16:31 员工0 工作完成 2024-10-26 21:16:31 员工3 开始工作 2024-10-26 21:16:32 员工3 工作完成 

Event-事件

在 Python 的 threading 模块中,Event 是一个线程同步原语,用于在多个线程之间进行简单的通信。Event 对象维护一个内部标志,线程可以使用 wait() 方法阻塞,直到另一个线程调用 set() 方法将标志设置为 True。一旦标志被设置为 True,所有等待的线程将被唤醒并继续执行。

Event 的主要方法

  1. set():将事件的内部标志设置为 True,并唤醒所有等待的线程。
  2. clear():将事件的内部标志设置为 False
  3. is_set():返回事件的内部标志是否为 True
  4. wait(timeout=None):如果事件的内部标志为 False,则阻塞当前线程,直到标志被设置为 True 或超时(如果指定了 timeout)。
import threading import time import random  class Employee(threading.Thread):     def __init__(self, username: str, cond: threading.Event):         self.username = username         self.cond = cond         super().__init__()      def run(self):         print(f"{time.strftime('%F %T')} {self.username} 到达公司")         self.cond.wait()  # 等待事件标志为True         print(f"{time.strftime('%F %T')} {self.username} 开始工作")         time.sleep(random.randint(1, 5))         print(f"{time.strftime('%F %T')} {self.username} 工作完成")  class Boss(threading.Thread):     def __init__(self, username: str, cond: threading.Event):         self.username = username         self.cond = cond         super().__init__()      def run(self):         print(f"{time.strftime('%F %T')} {self.username} 发出通知")         self.cond.set()  if __name__ == "__main__":     cond = threading.Event()     boss = Boss("老王", cond)          employees = []     for i in range(5):         employees.append(Employee(f"员工{i}", cond))      for employee in employees:         employee.start()     boss.start()      boss.join()     for employee in employees:         employee.join()  

执行输出

2024-10-26 21:22:28 员工0 到达公司 2024-10-26 21:22:28 员工1 到达公司 2024-10-26 21:22:28 员工2 到达公司 2024-10-26 21:22:28 员工3 到达公司 2024-10-26 21:22:28 员工4 到达公司 2024-10-26 21:22:28 老王 发出通知 2024-10-26 21:22:28 员工0 开始工作 2024-10-26 21:22:28 员工1 开始工作 2024-10-26 21:22:28 员工3 开始工作 2024-10-26 21:22:28 员工4 开始工作 2024-10-26 21:22:28 员工2 开始工作 2024-10-26 21:22:30 员工3 工作完成 2024-10-26 21:22:31 员工4 工作完成 2024-10-26 21:22:31 员工2 工作完成 2024-10-26 21:22:32 员工0 工作完成 2024-10-26 21:22:32 员工1 工作完成 

使用队列

Python的queue模块提供同步、线程安全的队列类。以下示例为使用queue实现的生产消费者模型

import threading import time import random import queue   class Producer(threading.Thread):     """多线程生产者类."""      def __init__(         self, tname: str, channel: queue.Queue, done: threading.Event     ):         self.tname = tname         self.channel = channel         self.done = done         super().__init__()      def run(self) -> None:         """Method representing the thread's activity."""          while True:             if self.done.is_set():                 print(                     f"{time.strftime('%F %T')} {self.tname} 收到停止信号事件"                 )                 break             if self.channel.full():                 print(                     f"{time.strftime('%F %T')} {self.tname} report: 队列已满, 全部停止生产"                 )                 self.done.set()             else:                 num = random.randint(100, 1000)                 self.channel.put(f"{self.tname}-{num}")                 print(                     f"{time.strftime('%F %T')} {self.tname} 生成数据 {num}, queue size: {self.channel.qsize()}"                 )                 time.sleep(random.randint(1, 5))   class Consumer(threading.Thread):     """多线程消费者类."""      def __init__(         self, tname: str, channel: queue.Queue, done: threading.Event     ):         self.tname = tname         self.channel = channel         self.done = done         self.counter = 0         super().__init__()      def run(self) -> None:         """Method representing the thread's activity."""         while True:             if self.done.is_set():                 print(                     f"{time.strftime('%F %T')} {self.tname} 收到停止信号事件"                 )                 break             if self.counter >= 3:                 print(                     f"{time.strftime('%F %T')} {self.tname} report: 全部停止消费"                 )                 self.done.set()                 continue             if self.channel.empty():                 print(                     f"{time.strftime('%F %T')} {self.tname} report: 队列为空, counter: {self.counter}"                 )                 self.counter += 1                 time.sleep(1)                 continue             else:                 data = self.channel.get()                 print(                     f"{time.strftime('%F %T')} {self.tname} 消费数据 {data}, queue size: {self.channel.qsize()}"                 )                 time.sleep(random.randint(1, 5))                 self.counter = 0   if __name__ == "__main__":     done_p = threading.Event()     done_c = threading.Event()     channel = queue.Queue(30)     threads_producer = []     threads_consumer = []      for i in range(8):         threads_producer.append(Producer(f"producer-{i}", channel, done_p))      for i in range(6):         threads_consumer.append(Consumer(f"consumer-{i}", channel, done_c))      for t in threads_producer:         t.start()      for t in threads_consumer:         t.start()      for t in threads_producer:         t.join()      for t in threads_consumer:         t.join()  

线程池

在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或其他更多资源。在多线程程序中,生成一个新线程之后销毁,然后再创建一个,这种方式就很低效。池化多线程,也就是线程池就为此而生。

将任务添加到线程池中,线程池会自动指定一个空闲的线程去执行任务,当超过最大线程数时,任务需要等待有新的空闲线程才会被执行。Python一般可以使用multiprocessing模块中的Pool来创建线程池。

import time  from multiprocessing.dummy import Pool as ThreadPool  def foo(n):     time.sleep(2)   if __name__ == "__main__":     start = time.time()     for n in range(5):         foo(n)     print("single thread time: ", time.time() - start)      start = time.time()     t_pool = ThreadPool(processes=5)  # 创建线程池, 指定池中的线程数为5(默认为CPU数)     rst = t_pool.map(foo, range(5))  # 使用map为每个元素应用到foo函数     t_pool.close()  # 阻止任何新的任务提交到线程池     t_pool.join()  # 等待所有已提交的任务完成     print("thread pool time: ", time.time() - start) 

线程池执行器

python的内置模块concurrent.futures提供了ThreadPoolExecutor类。这个类结合了线程和队列的优势,可以用来平行执行任务。

import time from random import randint from concurrent.futures import ThreadPoolExecutor  def foo() -> None:     time.sleep(2)     return randint(1,100)  if __name__ == "__main__":     start = time.time()     futures = []     with ThreadPoolExecutor(max_workers=5) as executor:         for n in range(10):             futures.append(executor.submit(foo))  # Fan out                  for future in futures:  # Fan in         print(future.result())     print("thread pool executor time: ", time.time() - start) 

执行输出

44 19 86 48 35 74 59 99 58 53 thread pool executor time:  4.001955032348633 

ThreadPoolExecutor类的最大优点在于:如果调用者通过submit方法把某项任务交给它执行,那么会获得一个与该任务相对应的Future实例,当调用者在这个实例上通过result方法获取执行结果时,ThreadPoolExecutor会把它在执行任务的过程中所遇到的异常自动抛给调用者。而ThreadPoolExecutor类的缺点是IO并行能力不高,即便把max_worker设为100,也无法高效处理任务。更高需求的IO任务可以考虑换异步协程方案。

参考

  • 郑征《Python自动化运维快速入门》清华大学出版社
  • Brett Slatkin《Effective Python》(2nd) 机械工业出版社
发表评论

相关文章