K8S 安装步骤
一、准备工作
1.准备三台主机(一台Master节点,两台Node节点)如下:
角色 | IP | 内存 | 核心 | 磁盘 |
---|---|---|---|---|
Master | 192.168.116.131 | 4G | 4个 | 55G |
Node01 | 192.168.116.132 | 4G | 4个 | 55G |
Node02 | 192.168.116.133 | 4G | 4个 | 55G |
2.关闭SElinux,因为SElinux会影响K8S部分组件无法正常工作:
sed -i '1,$s/SELINUX=enforcing/SELINUX=disabled/g' /etc/selinux/config # reboot
3.三台主机分别配置主机名,如下:
控制节点Master:
hostnamectl set-hostname master && bash
工作节点Node01:
hostnamectl set-hostname node01 && bash
工作节点Node02:
hostnamectl set-hostname node02 && bash
4.三台主机分别配置host文件:
-
进入hosts文件:
cd /etc/hosts
-
修改文件内容,添加三台主机以及IP:
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6 192.168.116.131 master 192.168.116.132 node01 192.168.116.133 node02
-
修改完可以三台主机用ping命令检查是否连通:
ping -c1 -W1 master ping -c1 -W1 node01 ping -c1 -W1 node02
5.三台主机分别下载所需意外组件包和相关依赖包:
yum install -y yum-utils device-mapper-persistent-data lvm2 wget net-tools nfs-utils lrzsz gcc gcc-c++ make cmake libxml2-devel openssl-devel curl curl-devel unzip autoconf automake zlib-devel epel-release openssh-server libaio-devel vim ncurses-devel socat conntrack telnet ipvsadm
所需相关意外组件包解释如下:
yum-utils:提供了一些辅助工具用于 yum
包管理器,比如 yum-config-manager
,repoquery
等。
device-mapper-persistent-data:与 Linux 的设备映射功能相关,通常与 LVM(逻辑卷管理)和容器存储(如 Docker)有关。
lvm2:逻辑卷管理器,用于管理磁盘上的逻辑卷,允许灵活的磁盘分区管理。
wget:一个非交互式网络下载工具,支持 HTTP、HTTPS 和 FTP 协议,常用于下载文件。
net-tools:提供一些经典的网络工具,如 ifconfig
,netstat
等,用于查看和管理网络配置。
nfs-utils:支持 NFS(网络文件系统)的工具包,允许客户端挂载远程文件系统。
lrzsz:lrz
和 lsz
是 Linux 系统下用于 X/ZMODEM 文件传输协议的命令行工具,常用于串口传输数据。
gcc:GNU C 编译器,用于编译 C 语言程序。
gcc-c++:GNU C++ 编译器,用于编译 C++ 语言程序。
make:用于构建和编译程序,通常与 Makefile
配合使用,控制程序的编译和打包过程。
cmake:跨平台的构建系统生成工具,用于管理项目的编译过程,特别适用于大型复杂项目。
libxml2-devel:开发用的 libxml2
库头文件,libxml2
是一个用于解析 XML 文件的 C 库。
openssl-devel:用于 OpenSSL 库开发的头文件和开发库,OpenSSL 是用于 SSL/TLS 加密的库。
curl:一个用于传输数据的命令行工具,支持多种协议(HTTP、FTP 等)。
curl-devel:开发用的 curl
库和头文件,支持在代码中使用 curl
相关功能。
unzip:用于解压缩 .zip
文件。
autoconf:自动生成配置脚本的工具,常用于生成软件包的 configure
文件。
automake:自动生成 Makefile.in
文件,结合 autoconf
使用,用于构建系统。
zlib-devel:zlib
库的开发头文件,zlib
是一个用于数据压缩的库。
epel-release:用于启用 EPEL(Extra Packages for Enterprise Linux)存储库,提供大量额外的软件包。
openssh-server:OpenSSH 服务器,用于通过 SSH 远程登录和管理系统。
libaio-devel:异步 I/O 库的开发头文件,提供异步文件 I/O 支持,常用于数据库和高性能应用。
vim:一个强大的文本编辑器,支持多种语言和扩展功能。
ncurses-devel:开发用的 ncurses
库,提供终端控制和用户界面的构建工具。
socat:一个多功能的网络工具,用于双向数据传输,支持多种协议和地址类型。
conntrack:连接跟踪工具,显示和操作内核中的连接跟踪表,常用于网络防火墙和 NAT 配置。
telnet:用于远程登录的一种简单网络协议,允许通过命令行与远程主机进行通信。
ipvsadm:用于管理 IPVS(IP 虚拟服务器),这是一个 Linux 内核中的负载均衡模块,常用于高可用性负载均衡集群。
6.配置主机之间免密登录
Master节点:
1)配置Master主机到另外两台Node主机免密登录
ssh-keygen # 遇到问题不输入任何内容,直按回车
2)把刚刚生成的公钥文件传递到两台Node节点,输入yes后,在输入主机对应的密码
ssh-copy-id master ssh-copy-id node01 ssh-copy-id node02
Node01节点:
1)配置Node01主机到另外两台主机免密登录
ssh-keygen # 遇到问题不输入任何内容,直按回车
2)把刚刚生成的公钥文件传递到两台Node节点,输入yes后,在输入主机对应的密码
ssh-copy-id master ssh-copy-id node01 ssh-copy-id node02
Node02节点:
1)配置Node01主机到另外两台主机免密登录
ssh-keygen # 遇到问题不输入任何内容,直按回车
2)把刚刚生成的公钥文件传递到两台Node节点,输入yes后,在输入主机对应的密码
ssh-copy-id master ssh-copy-id node01 ssh-copy-id node02
7.关闭所有主机的firewall防火墙
如果不想关闭防火墙可以添加firewall-cmd规则进行过滤筛选,相关内容查询资料,不做演示。
关闭防火墙:
systemctl stop firewalld && systemctl disable firewalld systemctl status firewalld # 查询防火墙状态,关闭后应为 Active: inactive (dead)
添加防火墙规则:
6443:Kubernetes Api Server 2379、2380:Etcd数据库
10250、10255:kubelet服务 10257:kube-controller-manager 服务
10259:kube-scheduler 服务 30000-32767:在物理机映射的 NodePort端口
179、473、4789、9099:Calico 服务 9090、3000:Prometheus监控+Grafana面板
8443:Kubernetes Dashboard控制面板
# Kubernetes API Server firewall-cmd --zone=public --add-port=6443/tcp --permanent # Etcd 数据库 firewall-cmd --zone=public --add-port=2379-2380/tcp --permanent # Kubelet 服务 firewall-cmd --zone=public --add-port=10250/tcp --permanent firewall-cmd --zone=public --add-port=10255/tcp --permanent # Kube-Controller-Manager 服务 firewall-cmd --zone=public --add-port=10257/tcp --permanent # Kube-Scheduler 服务 firewall-cmd --zone=public --add-port=10259/tcp --permanent # NodePort 映射端口 firewall-cmd --zone=public --add-port=30000-32767/tcp --permanent # Calico 服务 firewall-cmd --zone=public --add-port=179/tcp --permanent # BGP firewall-cmd --zone=public --add-port=473/tcp --permanent # IP-in-IP firewall-cmd --zone=public --add-port=4789/udp --permanent # VXLAN firewall-cmd --zone=public --add-port=9099/tcp --permanent # Calico 服务 #Prometheus监控+Grafana面板 firewall-cmd --zone=public --add-port=9090/tcp --permanent firewall-cmd --zone=public --add-port=3000/tcp --permanent # Kubernetes Dashboard控制面板 firewall-cmd --zone=public --add-port=8443/tcp --permanent # 重新加载防火墙配置以应用更改 firewall-cmd --reload
8.三台主机关闭swap交换分区
swap 分区的读写速度远低于物理内存。如果 Kubernetes 工作负载依赖于 swap 来补偿内存不足,会导致性能显著下降,尤其是在资源密集型的容器应用中。Kubernetes 更倾向于让节点直接面临内存不足的情况,而不是依赖 swap,从而促使调度器重新分配资源。
Kubernetes 默认会在 kubelet
启动时检查 swap
的状态,并要求其关闭。如果 swap
未关闭,Kubernetes 可能无法正常启动并报出错误。例如:
[!WARNING]
kubelet: Swap is enabled; production deployments should disable swap.
为了让 Kubernetes 正常工作,建议在所有节点上永久关闭 swap,同时调整系统的内存管理:
swapoff -a # 关闭当前swap sed -i '/swap/s/^/#/' /etc/fstab # swap前添加注释 grep swap /etc/fstab # 成功关闭会这样:#/dev/mapper/rl-swap none swap defaults 0 0
9.修改内核参数
三台主机分别执行:
modprobe br_netfilter # 加载 Linux 内核模块
-
modprobe
:用于加载或卸载内核模块的命令。 -
br_netfilter
:该模块允许桥接的网络流量被 iptables 规则过滤,通常在启用网络桥接的情况下使用。 -
该模块主要在 Kubernetes 容器网络环境中使用,确保 Linux 内核能够正确处理网络流量的过滤和转发,特别是在容器间的通信中。
三台主机分别执行:
cat > /etc/sysctl.d/k8s.conf <<EOF net.bridge.bridge-nf-call-ip6tables = 1 net.bridge.bridge-nf-call-iptables = 1 net.ipv4.ip_forward = 1 EOF sysctl -p /etc/sysctl.d/k8s.conf # 使配置生效
- net.bridge.bridge-nf-call-ip6tables = 1:允许 IPv6 网络流量通过 Linux 网络桥接时使用
ip6tables
进行过滤。 - net.bridge.bridge-nf-call-iptables = 1:允许 IPv4 网络流量通过 Linux 网络桥接时使用
iptables
进行过滤。 - net.ipv4.ip_forward = 1:允许 Linux 内核进行 IPv4 数据包的转发(路由)。
这些设置确保在 Kubernetes 中,网络桥接流量可通过 iptables
和 ip6tables
过滤,并启用 IPv4 数据包转发,提升网络安全性和通信能力。
10.配置安装Docker和Containerd的yum源
三台主机分别安装docker-ce源(任选其一,只安装一个),后续操作只演示阿里源的。
# 阿里源 yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo # 清华大学开源软件镜像站 yum-config-manager --add-repo https://mirrors.tuna.tsinghua.edu.cn/docker-ce/linux/centos/docker-ce.repo # 中国科技大学开源镜像站 yum-config-manager --add-repo https://mirrors.ustc.edu.cn/docker-ce/linux/centos/docker-ce.repo # 中科大镜像源 yum-config-manager --add-repo https://mirrors.ustc.edu.cn/docker-ce/linux/centos/docker-ce.repo # 华为云源 yum-config-manager --add-repo https://repo.huaweicloud.com/docker-ce/linux/centos/docker-ce.repo
11.配置K8S命令行工具所需要的yum源
cat > /etc/yum.repos.d/kubernetes.repo <<EOF [kubernetes] name=Kubernetes baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64/ enabled=1 gpgcheck=1 repo_gpgcheck=1 gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg EOF yum makecache
12.三台主机进行时间同步
Chrony 和 NTPD都是用于时间同步的工具,但 Chrony 在许多方面有其独特的优点。以下是 Chrony 相较于 NTPD 的一些主要优点,并基于此,进行chrony时间同步的部署:
优点 | Chrony | NTPD |
---|---|---|
快速同步 | 在网络延迟较大或连接不稳定时,Chrony 可以更快地同步时间。 | 通常需要更长的时间来达到时间同步。 |
适应性强 | 在移动设备或虚拟环境中表现良好,能够快速适应网络变化。 | 在这些环境中的性能较差。 |
时钟漂移修正 | 能够更好地处理系统时钟漂移,通过频率调整来实现。 | 对系统时钟漂移的处理能力较弱。 |
配置简单 | 配置相对简单直观,易于理解和使用。 | 配置选项较多,可能需要更多时间来熟悉。 |
1) 三台主机安装Chrony
yum -y install chrony
2)三台主机修改配置文件,添加国内 NTP 服务器
echo "server ntp1.aliyun.com iburst" >> /etc/chrony.conf echo "server ntp2.aliyun.com iburst" >> /etc/chrony.conf echo "server ntp3.aliyun.com iburst" >> /etc/chrony.conf echo "server ntp.tuna.tsinghua.edu.cn iburst" >> /etc/chrony.conf tail -n 4 /etc/chrony.conf systemctl restart chronyd
3) 可以设置定时任务,每分钟重启chrony服务,进行时间校准(非必须)
echo "* * * * * /usr/bin/systemctl restart chronyd" | tee -a /var/spool/cron/root
建议手动进行添加,首先执行crontab -e
命令,在将如下内容添加至定时任务中
* * * * * /usr/bin/systemctl restart chronyd
- 这五个星号表示时间调度,每个星号代表一个时间字段,从左到右分别是:
- 第一个星号:分钟(0-59)
- 第二个星号:小时(0-23)
- 第三个星号:日期(1-31)
- 第四个星号:月份(1-12)
- 第五个星号:星期几(0-7,0 和 7 都代表星期天)
- 在这里,每个字段都用
*
表示“每一个”,因此* * * * *
的意思是“每分钟的每一秒”。 /usr/bin/systemctl
是systemctl
命令的完整路径,用于管理系统服务。
13.安装Containerd
Containerd 是一个高性能的容器运行时,在 Kubernetes 中它负责容器的生命周期管理,包括创建、运行、停止和删除容器,同时支持从镜像仓库拉取和管理镜像。Containerd 提供容器运行时接口 (CRI),与 Kubernetes 无缝集成,确保高效的资源利用和快速的容器启动时间。除此之外,它还支持事件监控和日志记录,方便运维和调试,是实现容器编排和管理的关键组件。
三台主机安装containerd1.6.22版本
yum -y install containerd.io-1.6.22 yum -y install containerd.io-1.6.22 --allowerasing # 如果安装有问题选择这个,默认用第一个
创建containerd的配置文件目录并修改自带的config.toml
。
mkdir -pv /etc/containerd vim /etc/containerd/config.toml
修改内容如下:
disabled_plugins = [] imports = [] oom_score = 0 plugin_dir = "" required_plugins = [] root = "/var/lib/containerd" state = "/run/containerd" temp = "" version = 2 [cgroup] path = "" [debug] address = "" format = "" gid = 0 level = "" uid = 0 [grpc] address = "/run/containerd/containerd.sock" gid = 0 max_recv_message_size = 16777216 max_send_message_size = 16777216 tcp_address = "" tcp_tls_ca = "" tcp_tls_cert = "" tcp_tls_key = "" uid = 0 [metrics] address = "" grpc_histogram = false [plugins] [plugins."io.containerd.gc.v1.scheduler"] deletion_threshold = 0 mutation_threshold = 100 pause_threshold = 0.02 schedule_delay = "0s" startup_delay = "100ms" [plugins."io.containerd.grpc.v1.cri"] device_ownership_from_security_context = false disable_apparmor = false disable_cgroup = false disable_hugetlb_controller = true disable_proc_mount = false disable_tcp_service = true enable_selinux = false enable_tls_streaming = false enable_unprivileged_icmp = false enable_unprivileged_ports = false ignore_image_defined_volumes = false max_concurrent_downloads = 3 max_container_log_line_size = 16384 netns_mounts_under_state_dir = false restrict_oom_score_adj = false sandbox_image = "registry.aliyuncs.com/google_containers/pause:3.9" selinux_category_range = 1024 stats_collect_period = 10 stream_idle_timeout = "4h0m0s" stream_server_address = "127.0.0.1" stream_server_port = "0" systemd_cgroup = false tolerate_missing_hugetlb_controller = true unset_seccomp_profile = "" [plugins."io.containerd.grpc.v1.cri".cni] bin_dir = "/opt/cni/bin" conf_dir = "/etc/cni/net.d" conf_template = "" ip_pref = "" max_conf_num = 1 [plugins."io.containerd.grpc.v1.cri".containerd] default_runtime_name = "runc" disable_snapshot_annotations = true discard_unpacked_layers = false ignore_rdt_not_enabled_errors = false no_pivot = false snapshotter = "overlayfs" [plugins."io.containerd.grpc.v1.cri".containerd.default_runtime] base_runtime_spec = "" cni_conf_dir = "" cni_max_conf_num = 0 container_annotations = [] pod_annotations = [] privileged_without_host_devices = false runtime_engine = "" runtime_path = "" runtime_root = "" runtime_type = "" [plugins."io.containerd.grpc.v1.cri".containerd.default_runtime.options] [plugins."io.containerd.grpc.v1.cri".containerd.runtimes] [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc] base_runtime_spec = "" cni_conf_dir = "" cni_max_conf_num = 0 container_annotations = [] pod_annotations = [] privileged_without_host_devices = false runtime_engine = "" runtime_path = "" runtime_root = "" runtime_type = "io.containerd.runc.v2" [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc.options] BinaryName = "" CriuImagePath = "" CriuPath = "" CriuWorkPath = "" IoGid = 0 IoUid = 0 NoNewKeyring = false NoPivotRoot = false Root = "" ShimCgroup = "" SystemdCgroup = true [plugins."io.containerd.grpc.v1.cri".containerd.untrusted_workload_runtime] base_runtime_spec = "" cni_conf_dir = "" cni_max_conf_num = 0 container_annotations = [] pod_annotations = [] privileged_without_host_devices = false runtime_engine = "" runtime_path = "" runtime_root = "" runtime_type = "" [plugins."io.containerd.grpc.v1.cri".containerd.untrusted_workload_runtime.options] [plugins."io.containerd.grpc.v1.cri".image_decryption] key_model = "node" [plugins."io.containerd.grpc.v1.cri".registry] config_path = "" [plugins."io.containerd.grpc.v1.cri".registry.auths] [plugins."io.containerd.grpc.v1.cri".registry.configs] [plugins."io.containerd.grpc.v1.cri".registry.headers] [plugins."io.containerd.grpc.v1.cri".registry.mirrors] [plugins."io.containerd.grpc.v1.cri".x509_key_pair_streaming] tls_cert_file = "" tls_key_file = "" [plugins."io.containerd.internal.v1.opt"] path = "/opt/containerd" [plugins."io.containerd.internal.v1.restart"] interval = "10s" [plugins."io.containerd.internal.v1.tracing"] sampling_ratio = 1.0 service_name = "containerd" [plugins."io.containerd.metadata.v1.bolt"] content_sharing_policy = "shared" [plugins."io.containerd.monitor.v1.cgroups"] no_prometheus = false [plugins."io.containerd.runtime.v1.linux"] no_shim = false runtime = "runc" runtime_root = "" shim = "containerd-shim" shim_debug = false [plugins."io.containerd.runtime.v2.task"] platforms = ["linux/amd64"] sched_core = false [plugins."io.containerd.service.v1.diff-service"] default = ["walking"] [plugins."io.containerd.service.v1.tasks-service"] rdt_config_file = "" [plugins."io.containerd.snapshotter.v1.aufs"] root_path = "" [plugins."io.containerd.snapshotter.v1.btrfs"] root_path = "" [plugins."io.containerd.snapshotter.v1.devmapper"] async_remove = false base_image_size = "" discard_blocks = false fs_options = "" fs_type = "" pool_name = "" root_path = "" [plugins."io.containerd.snapshotter.v1.native"] root_path = "" [plugins."io.containerd.snapshotter.v1.overlayfs"] root_path = "" upperdir_label = false [plugins."io.containerd.snapshotter.v1.zfs"] root_path = "" [plugins."io.containerd.tracing.processor.v1.otlp"] endpoint = "" insecure = false protocol = "" [proxy_plugins] [stream_processors] [stream_processors."io.containerd.ocicrypt.decoder.v1.tar"] accepts = ["application/vnd.oci.image.layer.v1.tar+encrypted"] args = ["--decryption-keys-path", "/etc/containerd/ocicrypt/keys"] env = ["OCICRYPT_KEYPROVIDER_CONFIG=/etc/containerd/ocicrypt/ocicrypt_keyprovider.conf"] path = "ctd-decoder" returns = "application/vnd.oci.image.layer.v1.tar" [stream_processors."io.containerd.ocicrypt.decoder.v1.tar.gzip"] accepts = ["application/vnd.oci.image.layer.v1.tar+gzip+encrypted"] args = ["--decryption-keys-path", "/etc/containerd/ocicrypt/keys"] env = ["OCICRYPT_KEYPROVIDER_CONFIG=/etc/containerd/ocicrypt/ocicrypt_keyprovider.conf"] path = "ctd-decoder" returns = "application/vnd.oci.image.layer.v1.tar+gzip" [timeouts] "io.containerd.timeout.bolt.open" = "0s" "io.containerd.timeout.shim.cleanup" = "5s" "io.containerd.timeout.shim.load" = "5s" "io.containerd.timeout.shim.shutdown" = "3s" "io.containerd.timeout.task.state" = "2s" [ttrpc] address = "" gid = 0 uid = 0
sandbox 镜像源:设置 Kubernetes 使用的沙箱容器镜像,支持高效管理容器。
- sandbox_image = "registry.aliyuncs.com/google_containers/pause:3.9"
hugeTLB 控制器:禁用 hugeTLB 控制器,减少内存管理复杂性,适合不需要的环境。
- disable_hugetlb_controller = true
网络插件路径:指定 CNI 网络插件的二进制和配置路径,确保网络功能正常。
- bin_dir = "/opt/cni/bin"
- conf_dir = "/etc/cni/net.d"
垃圾回收调度器:调整垃圾回收阈值和启动延迟,优化容器资源管理和性能。
- pause_threshold = 0.02
- startup_delay = "100ms"
流媒体服务器:配置流媒体服务的地址和端口,实现与客户端的有效数据传输。
- stream_server_address = "127.0.0.1"
- stream_server_port = "0"
启动并设置containerd开机自启
systemctl enable containerd --now systemctl status containerd
14.安装Docker-ce(使用docker的拉镜像功能)
1)安装docker-ce最新版:
yum -y install docker-ce
2)启动并设置docker开机自启:
systemctl start docker && systemctl enable docker.service
3)配置docker的镜像加速器地址:
注:阿里加速地址登录阿里云加速器官网查看,每个人的加速地址不同
tee /etc/docker/daemon.json <<-'EOF' { "registry-mirrors": [ "https://fb3aq27p.mirror.aliyuncs.com", "https://registry.docker-cn.com", "https://docker.mirrors.ustc.edu.cn", "https://dockerhub.azk8s.cn", "http://hub-mirror.c.163.com" ] } EOF systemctl daemon-reload systemctl restart docker systemctl status docker
二、K8S安装部署
1.安装K8S相关核心组件
三台主机分别安装K8S相关核心组件:
yum -y install kubelet-1.28.2 kubeadm-1.28.2 kubectl-1.28.2 systemctl enable kubelet
kubelet
是 Kubernetes 集群中每个节点上的核心代理,它负责根据控制平面的指示管理和维护节点上的 Pod 及容器的生命周期,确保容器按规范运行并定期与控制平面通信。kubelet 会将节点和 Pod 的状态上报给控制节点的 apiServer,apiServer再将这些信息存储到 etcd 数据库中。kubeadm
是一个用于简化 Kubernetes 集群安装和管理的工具,快速初始化控制平面节点和将工作节点加入集群,减少手动配置的复杂性。kubectl
是 Kubernetes 的命令行工具,用于管理员与集群进行交互,执行各种任务,如部署应用、查看资源、排查问题、管理集群状态等,通过命令行与 Kubernetes API 直接通信。
2.初始化集群
1)Master节点使用kubeadm初始化K8S集群:
注:kubeadm安装K8S,控制节点和工作节点的组件都是基于Pod运行的。
kubeadm config print init-defaults > kubeadm.yaml
- 生成默认的配置文件重定向输出到 kubeadm.yaml 中
2)修改刚刚用kubeadm生成的kubeadm.yaml文件:
sed -i '1,$s/advertiseAddress: 1.2.3.4/advertiseAddress: 192.168.116.131/g' kubeadm.yaml sed -i "s|criSocket:.*|criSocket: unix://$(find / -name containerd.sock | head -n 1)|" kubeadm.yaml sed -i '1,$s/name: node/name: master/g' kubeadm.yaml sed -i 's|imageRepository: registry.k8s.io|imageRepository: registry.aliyuncs.com/google_containers|' kubeadm.yaml # 原配置为国外的k8s源,为了加速镜像的下载,需改成国内源 sed -i '/serviceSubnet/a podSubnet: 10.244.0.0/12' kubeadm.yaml # /a 表示在serviceSubnet行下方一行内容 cat <<EOF >> kubeadm.yaml --- apiVersion: kubeproxy.config.k8s.io/v1alpha1 kind: KubeProxyConfiguration mode: ipvs --- apiVersion: kubelet.config.k8s.io/v1beta1 kind: KubeletConfiguration cgroupDriver: systemd EOF more kubeadm.yaml # 手动检查一下
-
advertiseAddress
是 Kubernetes 控制节点的广告地址,其他节点通过这个地址与控制平面节点通信。它通常是控制节点所在服务器的 IP 地址,为了确保控制平面节点能在网络中通过正确的控制节点 IP 地址(我的MasterIP为:192.168.116.131)进行通信。 -
criSocket
指定的是 Kubernetes 使用的容器运行时(CRI)套接字地址,K8S 使用这个套接字与容器运行时(如 containerd)进行通信,来管理和启动容器。为了确保 K8S使用正确的容器运行时套接字。通过 find 命令查找 containerd.sock 文件路径并替换进配置文件,可以保证路径的准确性,避免手动查找和配置错误。 -
IPVS
模式支持更多的负载均衡算法,性能更好,尤其在集群节点和服务较多的情况下,可以显著提升网络转发效率和稳定性(如果没有指定mode为ipvs,则默认选定iptables,iptables性能相对较差)。 -
统一使用
systemd
作为容器和系统服务的cgroup
驱动,避免使用cgroupfs
时可能产生的资源管理不一致问题,提升 Kubernetes 和宿主机系统的兼容性和稳定性。注:主机 IP、Pod IP 和 Service IP 不能在同一网段,因会导致 IP 冲突、路由混乱及网络隔离失败,影响 Kubernetes 的正常通信和网络安全。
3)基于kubeadm.yaml 文件初始化K8S,三台主机分别拉取 Kubernetes 1.28.0 所需的镜像(两个方法可以二选一):
(1)使用使用 kubeadm
命令,快速拉取 Kubernetes 所有核心组件的镜像,并确保版本一致。
kubeadm config images pull --image-repository="registry.aliyuncs.com/google_containers" --kubernetes-version=v1.28.0
(2)使用 ctr
命令,需要更细粒度的控制,或在 kubeadm
拉取镜像过程中出现问题时,可以使用 ctr
命令手动拉取镜像。
ctr -n=k8s.io images pull registry.aliyuncs.com/google_containers/kube-apiserver:v1.28.0 ctr -n=k8s.io images pull registry.aliyuncs.com/google_containers/kube-controller-manager:v1.28.0 ctr -n=k8s.io images pull registry.aliyuncs.com/google_containers/kube-scheduler:v1.28.0 ctr -n=k8s.io images pull registry.aliyuncs.com/google_containers/kube-proxy:v1.28.0 ctr -n=k8s.io images pull registry.aliyuncs.com/google_containers/pause:3.9 ctr -n=k8s.io images pull registry.aliyuncs.com/google_containers/etcd:3.5.9-0 ctr -n=k8s.io images pull registry.aliyuncs.com/google_containers/coredns:v1.10.1
4)在Master控制节点,初始化 Kubernetes 主节点
kubeadm init --config=kubeadm.yaml --ignore-preflight-errors=SystemVerification
个别操作系统可能会出现kubelet启动失败的情况,如下提示,如果提示successfully则忽略以下步骤:
[!WARNING]
dial tcp [::1]:10248: connect: connection refused
执行systemctl status kubelet
发现出现以下错误提示:
[!WARNING]
Process: 2226953 ExecStart=/usr/bin/kubelet $KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARGS $KUBELET_EXTRA_ARGS (code=exited, status=1/FAILURE)
Main PID: 2226953 (code=exited, status=1/FAILURE)
解决方法如下,控制节点执行:
sed -i 's|ExecStart=/usr/bin/kubelet|ExecStart=/usr/bin/kubelet --container-runtime-endpoint=unix://$(find / -name containerd.sock | head -n 1) --kubeconfig=/etc/kubernetes/kubelet.conf --config=/var/lib/kubelet/config.yaml|' /usr/lib/systemd/system/kubelet.service systemctl daemon-reload systemctl restart kubelet kubeadm reset # 删除安装出错的K8S kubeadm init --config=kubeadm.yaml --ignore-preflight-errors=SystemVerification # 重新安装
3.设置 Kubernetes 的配置文件,以便让当前用户能够使用 kubectl
命令与 Kubernetes 集群进行交互
控制节点执行:
mkdir -p $HOME/.kube sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config sudo chown $(id -u):$(id -g) $HOME/.kube/config
4.工作节点加到K8S集群
1)添加工作节点之前,控制节点执行如下命令:
kubeadm token create --print-join-command
执行成功会出现如下提示(token):
[!IMPORTANT]
kubeadm join 192.168.116.131:6443 --token xxiuik.9axtcp5xk3n2yo7b --discovery-token-ca-cert-hash sha256:ed678b5331259917248c966bf387e6aaf9f588798fb3977090fd6203780ceca9
2)接下来就是复制生成这个这条token,分别在工作节点Node01和Node02进行执行,成功添加集群的提示为:
[!IMPORTANT]
This node has joined the cluster:
- Certificate signing request was sent to apiserver and a response was received.
- The Kubelet was informed of the new secure connection details.
注:如果在工作节点加入集群出现报错可以添加 --ignore-preflight-errors=SystemVerification
忽略遇见错误,如下所示:
kubeadm join 192.168.116.131:6443 --token xxiuik.9axtcp5xk3n2yo7b --discovery-token-ca-cert-hash sha256:ed678b5331259917248c966bf387e6aaf9f588798fb3977090fd6203780ceca9 --ignore-preflight-errors=SystemVerification
2)设置一个用户的 kubectl
环境,使其能够与 Kubernetes 集群进行交互:
mkdir ~/.kube cp /etc/kubernetes/kubelet.conf ~/.kube/config
kubectl
默认会在用户主目录下的.kube/config
文件中查找 Kubernetes 集群的连接信息。如果这个文件不存在,kubectl
将无法找到任何指向 API 服务器的配置信息。- 如果你没有执行上述两条命令,
kubectl
就没有配置文件可用,导致其尝试连接到默认的 API 服务器地址http://localhost:8080
。
若不配置用户的kubectl环境,查看节点状态时会出现如下错误:
[!WARNING]
E1004 22:30:56.770509 34971 memcache.go:265] couldn't get current server API group list: Get "http://localhost:8080/api?timeout=32s": dial tcp [::1]:8080: connect: connection refused
E1004 22:30:56.777399 34971 memcache.go:265] couldn't get current server API group list: Get "http://localhost:8080/api?timeout=32s": dial tcp [::1]:8080: connect: connection refused
E1004 22:30:56.780040 34971 memcache.go:265] couldn't get current server API group list: Get "http://localhost:8080/api?timeout=32s": dial tcp [::1]:8080: connect: connection refused
E1004 22:30:56.781809 34971 memcache.go:265] couldn't get current server API group list: Get "http://localhost:8080/api?timeout=32s": dial tcp [::1]:8080: connect: connection refused
E1004 22:30:56.783489 34971 memcache.go:265] couldn't get current server API group list: Get "http://localhost:8080/api?timeout=32s": dial tcp [::1]:8080: connect: connection refused
The connection to the server localhost:8080 was refused - did you specify the right host or port?
最后查看所有节点的状态(在控制节点或者工作节点都可以检查):
kubectl get nodes
[!IMPORTANT]
NAME STATUS ROLES AGE VERSION
master NotReady control-plane 68m v1.28.2
node01 NotReady11m v1.28.2
node02 NotReady21m v1.28.2
5.安装k8s网络组件Calico
Calico 是一个流行的开源网络解决方案,专为 Kubernetes 提供高效、可扩展和安全的网络连接。它采用了基于 IP 的网络模型,使每个 Pod 都能获得一个唯一的 IP 地址,从而简化了网络管理。Calico 支持多种网络策略,可以实现细粒度的流量控制和安全策略,例如基于标签的访问控制,允许用户定义哪些 Pod 可以相互通信。(简单来说就是给Pod和Service分IP的,还能通过网络策略做网络隔离)
1)三台主机分别安装calico:
ctr image pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/calico/cni:v3.25.0 ctr image pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/calico/pod2daemon-flexvol:v3.25.0 ctr image pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/calico/node:v3.25.0 ctr image pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/calico/kube-controllers:v3.25.0 ctr image pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/calico/typha:v3.25.0
2) 控制节点下载calico3.25.0的yaml配置文件(下载失败把URL复制到浏览器,手动复制粘贴到Master节点效果相同)
curl -O -L https://raw.githubusercontent.com/projectcalico/calico/v3.25.0/manifests/calico.yaml
3)编辑calico.yaml,找到CLUSTER_TYPE行,在下面添加一对键值对,确保使用网卡接口(注意缩进):
原配置:
- name: CLUSTER_TYPE value: "k8s,bgp"
新配置:
- name: CLUSTER_TYPE value: "k8s,bgp" - name: IP_AUTODELECTION_METHOD value: "interface=ens160"
注:不同操作系统的网卡名称有差异,例:centos7.9的网卡名称为ens33,就要填写value: "interface=ens33",需灵活变通。
注:如果出现calico拉取镜像错误问题,可能是没有修改imagePullPresent规则,可以修改官方源下载为华为源下载,如下:
sed -i '1,$s|docker.io/calico/cni:v3.25.0|swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/calico/cni:v3.25.0|g' calico.yaml sed -i '1,$s|docker.io/calico/node:v3.25.0|swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/calico/node:v3.25.0|g' calico.yaml sed -i '1,$s|docker.io/calico/kube-controllers:v3.25.0|swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/calico/kube-controllers:v3.25.0|g' calico.yaml
4)部署calico网络服务
kubectl apply -f calico.yaml
查看在 Kubernetes 集群中查看属于 kube-system
命名空间的所有 Pod 的详细信息(控制节点和工作节点都查的到):
kubectl get pod --namespace kube-system -o wide
calico安装成功的信息大概如下:
[!IMPORTANT]
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
calico-kube-controllers-665548954f-99gbl 1/1 Running 0 69s 10.251.205.131 master
calico-node-57bg8 1/1 Running 0 69s 192.168.116.132 node01
calico-node-lfqtb 1/1 Running 0 69s 192.168.116.133 node02
calico-node-vqg9b 1/1 Running 0 69s 192.168.116.131 master
coredns-66f779496c-44t4m 1/1 Running 0 13h 10.251.205.130 master
coredns-66f779496c-vmwdj 1/1 Running 0 13h 10.251.205.129 master
etcd-master 1/1 Running 0 13h 192.168.116.131 master
kube-apiserver-master 1/1 Running 0 13h 192.168.116.131 master
kube-controller-manager-master 1/1 Running 0 13h 192.168.116.131 master
kube-proxy-6v262 1/1 Running 1 12h 192.168.116.133 node02
kube-proxy-s84wz 1/1 Running 0 13h 192.168.116.131 master
kube-proxy-z8k5d 1/1 Running 0 12h 192.168.116.132 node01
kube-scheduler-master 1/1 Running 0 13h 192.168.116.131 master
三、总结
部署成功和不成功麻烦反馈一下,我会做出优化调整。
▃▆█▇▄▖
▟◤▖ ◥█▎
◢◤ ▐ ▐▉
▗◤ ▂ ▗▖ ▕█▎
◤ ▗▅▖◥▄ ▀◣ █▊
▐ ▕▎◥▖◣◤ ◢██
█◣ ◥▅█▀ ▐██◤
▐█▙▂ ◢██◤
◥██◣ ◢▄◤
▀██▅▇▀