使用广播星历计算卫星坐标(Python)

前言

  1. 本代码为GNSS课程设计代码,仅供参考,使用的计算方法与公式均来源于王坚主编的《卫星定位原理与应用(第二版)》。
  2. 本代码计算结果可以通过下载精密星历进行比照,误差在1-10m左右。
  3. 实现功能:读取卫星广播星历,并将其计算为WGS-84坐标系下的坐标,每颗卫星,每15分钟输出一次。

广播星历下载

  1. 有多重方法进行下载,由于网络原因以及使用的便捷程度,建议使用武汉大学的IGS网站进行下载。(http://www.igs.gnsswhu.cn/index.php)
  2. 文件名不需要填写,在选择时间时注意,即使只选择一天的数据,设置结束时间也要到第二天,否则会显示错误,检索结果中的数字代表该日期是所选年份的第几天。

Python函数库

本代码使用numpy,pandas,gnss_lib_py,matplotlib四个函数库,请提前安装。

安装代码

#两条命令根据使用环境进行选择 pip install gnss-lib-py pandas matplotlib #Python环境安装代码 conda install gnss-lib-py pandas matplotlib -c conda-forge #conda环境安装代码 

gnss_lib_py库

GitHub主页:https://github.com/Stanford-NavLab/gnss_lib_py?tab=readme-ov-file
文档主页:https://gnss-lib-py.readthedocs.io/en/latest/index.html
本文主要使用该库的读取以及转化为DataFrame功能,其中参数的命名规则以及时间转换规则可以在文档中找到。

具体代码

建议使用jupyter进行执行,下方代码为分单元块格式,如果没有jupyter环境可以直接粘贴到一个python文件进行运行。

代码块一:

import gnss_lib_py as glp import datetime import pandas as pd import numpy as np import matplotlib.pyplot as plt 

代码块二:

# 导入23n文件 file_path = 'brdc2550.23n' data = glp.RinexNav(file_path) data_df = data.pandas_df() 

代码块三:

# 寻找最小差值的参考时刻 def find(inweekmilli, refers, insv):     filter_sv = refers[refers['gnss_sv_id'] == insv]     defference = np.abs(inweekmilli - filter_sv['t_oe'])     return defference.idxmin()   times = np.array([None] * 24 * 4) gpsmillis = np.array([None] * 24 * 4)  n = 0 for hour in range(0, 24):     minut = 0     while minut < 60:         times[n] = datetime.datetime(2023, 9, 12, hour, minut, 0, tzinfo=datetime.timezone.utc)         gpsmillis[n] = glp.datetime_to_gps_millis(times[n])         minut += 15         n += 1 gpsmillis = np.array(gpsmillis)  GM=3.986005E+14 sqrtGM = np.sqrt(GM) sv_list = [f'G{str(i).zfill(2)}' for i in range(1, 33)] outdata = pd.DataFrame(columns=['data', 'gnss_sv_id', 'X', 'Y', 'Z'], index=range(24 * 4 * 32)) orbit = pd.DataFrame(columns=['data', 'gnss_sv_id', 'x', 'y'], index=range(24 * 4 * 32)) m = 0 j = 0 print("正在计算,请稍候。") for gpsmilli in gpsmillis:     for sv in sv_list:         week, milli_week = glp.gps_millis_to_tow(gpsmilli)         milli_week=milli_week-18         index = find(milli_week, data_df, sv)         print(f'sv:{sv},time:{times[j]},index:{index}')         print(milli_week,data_df.iloc[index]['t_oe'])         a = np.power(data_df.iloc[index]['sqrtA'], 2)         n0 = sqrtGM / np.power(a, 3 / 2)         n = n0 + data_df.iloc[index]['deltaN']         tk = milli_week - data_df.iloc[index]['t_oe']         M = data_df.iloc[index]['M_0'] + n * tk         e = data_df.iloc[index]['e']         # 打印中间结果M和e         print(f"M: {M}, e: {e}")          # 解开普勒方程         E = M         for _ in range(50):  # 使用迭代方法求解E             E = M + e * np.sin(E)                  # 打印中间结果E         print(f"E: {E}")         f = np.arctan((np.sqrt(1 - e**2) * np.sin(E)) / (np.cos(E) - e))         if E > np.pi*0.5:             f=f+np.pi         if E < -np.pi*0.5:             f=f-np.pi         if np.pi*0.5 > E > 0 > f:             f=f+np.pi         if -np.pi*0.5 < E < 0 < f:             f=f-np.pi         print(f"arctan({(np.sqrt(1 - e**2) * np.sin(E)) / (np.cos(E) - e)}),f:{f}")         u_pie = data_df.iloc[index]['omega'] + f         r_pie = a * (1 - e * np.cos(E))         C_uc = data_df.iloc[index]['C_uc']         C_us = data_df.iloc[index]['C_us']         C_rc = data_df.iloc[index]['C_rc']         C_rs = data_df.iloc[index]['C_rs']         C_ic = data_df.iloc[index]['C_ic']         C_is = data_df.iloc[index]['C_is']         delta_u = C_uc * np.cos(2 * u_pie) + C_us * np.sin(2 * u_pie)         delta_r = C_rc * np.cos(2 * u_pie) + C_rs * np.sin(2 * u_pie)         delta_i = C_ic * np.cos(2 * u_pie) + C_is * np.sin(2 * u_pie)         u = u_pie + delta_u         r = r_pie + delta_r         i = data_df.iloc[index]['i_0'] + delta_i + data_df.iloc[index]['IDOT'] * tk         print(f'u:{u}')         x = r * np.cos(u)         y = r * np.sin(u)         w_e = 7.292115E-5         L = data_df.iloc[index]['Omega_0'] + (data_df.iloc[index]['OmegaDot']- w_e )* milli_week - data_df.iloc[index]['OmegaDot']*data_df.iloc[index]['t_oe']         X = x * np.cos(L) - y * np.cos(i) * np.sin(L)         Y = x * np.sin(L) + y * np.cos(i) * np.cos(L)         Z = y * np.sin(i)         orbit.iloc[m,:] = [times[j],sv,x,y]         outdata.iloc[m, :] = [times[j], sv, X, Y, Z]         m += 1     j += 1 print("由于结果较长,请到Excel中查看,文件位于代码同级目录下outdata.csv。") outdata.to_csv('outdata.csv') print("导出成功。") 

代码块四:

# 三维坐标可视化显示 out_sv = 'G20' fig = plt.figure() ax = plt.axes(projection='3d') X = outdata[outdata['gnss_sv_id'] == out_sv]['X'] Y = outdata[outdata['gnss_sv_id'] == out_sv]['Y'] Z = outdata[outdata['gnss_sv_id'] == out_sv]['Z'] ax.plot(X, Y, Z, label=out_sv) ax.legend() plt.show() 

发表评论

相关文章